1.1 Физико-географические условия

Физико-географические условия Каспийского моря описаны в многочисленных научных изданиях и научно-справочных пособиях. Здесь мы сочли необходимым упомянуть лищь те из этих условий (Таблица 1.1.1), которые играют ведушую роль в динамике и эволюдии каспийской экосистемы и определяют ее своеобразные черты.

Таблица 1.1.1
Физико-теографические условия Каспийского моря и их роль в функционировании морских экосистем

Физико-географнческие условия Каспийского моря	Роль физико-географических условий в жизнедеятельности каспийской экосистемы
Расположевие моря в средних шнротах Северного полушария	Относительно высокое среднее годовое आачение и ярко выраженные сезонные изменения приходящей солнечной радиации (5 , соответственно, температуры шоверхностного слоя воды), обуславливаюшие аналотвчные изменення скорости биохимических процессов в морской среде
Расположение моря в глубине Евразийского континента	Преобладание антициклонатного типа погоды над циклоническим, как следствие, высокая повторяемость полей ветра и дрейфовых течевий одного направления (СЗ, СВ, ЮВ), участие эолового выноса в формировании баланса взвесей, солей, в т.ч. биогенных элементов
Высокое (4:1) отношение меридионалнной (около $1200 \mathrm{kм}$) н широтвой (около $300 \mathrm{kм}$) протяженности моря, его батиметрическая неоднородность	Сушественное отлнчие гидрологического режима северной, средней и тжжний частей моря, формирование в каждой из них самостоятельной биподярной (циклонической и антициклонической) системы ниркуляции вол.
Назичие высокогорных массивов на Западном и Южном побережьях моря	Трансформашия широтных потоков воздушних масс над морем в меридиональные, превышение меридиональной составляющей скорости течений, транспорта взвешенных и растворенных веществ над широтной, увеличение вклада прибрежной циркуляции вод в динамику вод моря в делом.
Неравномерное расиределение речного стока по фериметру Каспия, его сосредоточенность (не менее 85%) в северной части моря	Неравномерное распределение полей плотности. солености, взвешенных веществ, биогенных элементов и др. гидрохимических параметров, численности стеногалинных гидробионтов, концентрация в северной частн моря пагульных площадей и путей верестовых митрацнй полупроходных и проходиых рыб
Низкое отношение (около $5 \mathrm{~km}^{-1}$) площади поверхности моря к его объему при средней нлбине моря, равной 194 m , и максимальной, равной 1025 m	Превышение скорости тенлообмена поверхностного слоя моря с атмосферой над таковой с нижележашими слоями воды
Неравномерное распределение глубины моря, средние гдубины северной, средней и южной частей моря находятея в соотношении $1: 43: 65$	Существеннос различие в скорости экзо- и эндобногеохимических процессов (интенсивности массоб́мена на внутренних и внешних границах, в т.ч. границе «вода-живое вещество) между частями моря
Высокое (10:1) отношение площажи бассейна моря к площади его акватории	Преобладание поверхностного стока в приходних статьsх водного и солевого баланса моря, а также баланса загрязняющих всществ и минеральных взвесей

Природные условия воздействуют на экосистему моря и участвуют в ее функционировании, как в отдельности, так и в сочетании друг с другом. Например, формирова-

ние в глубоководной части Каспия двух водных масс (поверхностной и придонной), отличающихся по своему гидрологическому, гидрохимическому и гидробиологическому режиму, обусловлено низким отношением площади моря к его объему в сочетании с сезонной изменчивостью радиационного баланса. Сосредоточенность поверхностного стока в северной мелководной части моря определяет высокое отношение площади устьевых областей рек к площади акватории моря в целом, наличие нескольких достаточно устойчивых и широких зон с промежуточной соленостью, «ступенчатость» геохимического барьера «река-море», глубокие изменения физико-химических свойств речной воды до ее соприкосновения с истинно морскими водами. В частности, биогенные соли, поступающие с речным стоком, практически полностью утилизируются водной растительностью в нижней части дельты и на устьевом взморье.

Преобладанием поверхностного стока в приходных статьях водного баланса, высоким отношением площади бассейна к площади акватории и большой повторяемостью антициклональных условий погоды над Каспием обусловлены, соответственно, высокое ($4: 1$) отношение слоя речного стока к сумме атмосферных осадков, выпадающих на поверхность моря, наличие ярко выраженных сезонных колебаний уровня моря и неустойчивость его водного режима в многолетнем плане.

Длительное отсутствие связи с Мировым Океаном определило солоноватый тип воды современного Каспийского моря. Это в свою очередь позволяет термической конвекции достигать максимальных глубин, а в сочетании с активным динамическим перемешиванием, вызванным интенсивными метеорологическими процессами, определяет равномерное распределение солености по глубине.

Впервые Каспий изолировался от других морей около 50 миллионов лет назад, а в последний раз это произошло по историческим меркам совсем недавно, - с тех пор не прошло и десяти тысяч лет (Аладин, Плотников, 2000). Основными природными факторами, воздействующими на состояние экосистемы моря в течение его многовековой истории, были геотектоника и климат. Первая отвечала в основном за изменение размеров, формы и глубины водоема, которые, как показано выше на примере Каспия, имеют немаловажное значение для функционирования водных экосистем. С динамикой климата были связаны изменения радиационного, водного и солевого баланса моря. Изменения климата вкупе с изменениями морфометрических характеристик Каспийского моря оказывали воздействие на вертикальную и горизонтальную циркуляцию морских вод.

При уменьшении временного масштаба до исторически обозримого периода времени (несколько тысяч лет) основным фактором внешнего воздействия на экосистему Каспийского моря становится климат, так как действие геологических сил в этом временном масштабе становится несоизмеримо малым. В циклических колебаниях климата с периодом, превышающим несколько столетий (3-5 веков), более холодные климатические эпохи, как правило, были одновременно и более влажными (в пределах бассейна Каспийского моря или шире - в границах Восточной Европы). Для них были характерны: а) активная зональная циркуляция с выходом циклонов на районы Каспийского бассейна; б) увеличение объема речного стока и повышение уровня моря; в) опреснение моря и распространение в нем галофобной флоры и фауны (Рис. 1.1.1)

Характерные уровни Каснийскоге моря, м аб́с.

Abstract

Сверхмаксимальньий Самый максимальный уровень за историчсское время. Он фиксируется приблизнтельно 2600 лет назад. Его аномалия относитетьно среднего составляет около +7 m при обеспеченности 1%, повторяемости 1-2 раза за 2600 лет и продолжительности стояния $10-20$ лет. Плошадь моря достигает 472,7 тыс. км, ${ }^{2}$, а ее аномалия $+85,6$ тыс. км ${ }^{2}$. Экстремальные климатические условия с преобладанием высокой степени увлажненности. Активный западный перенос воздушных масс. Очень высокий \% облачности. Максимальное количество пиклонов с очень высокой водностью. Преоблалание паводочвого режима в стоке рек. Ослаблены процессы испарения с морской акватории. Возможен приток вод Амударьи в Каспий через Узбой. Заливы Кара-Богаз-Гол и Красноводский становятся частыю акватории моря.

Максимальный

Средний сверхвековой уровень за 10 тыс, лет. Максиманьный уровень за инструментатьный период зарегистрирован в 1882 году. Его аномалия составляет около +2 метров при обеспеченности 27% и повторяемости около 15 раз при средней продолжительностн стояния около 60 лет. Плопадь моря составляет 414,7 , а ее аномалия $+22,1$ тыс. км ${ }^{2}$. Пониженная температура воздуха и воды. Преобладание западного переноса воздуиных масе. Увеличение облачности. Повьшенная водность циклонов, Увеличение водности рек. Сокращение испарения с акватории моря. Повышенный еток в Кара-Богаз-Гол.

Средний

Срсдний уровень за историческое время. За инструментальный пернод фиксируется в 1937 и в 1922 rодах. Ero обеспеченность составляет 46% при повторяемости около 23 раз и средней продолжнтельности стояния около 110 лет. Глощадь моря составляет 392,6 тыс. км². Переходный период в изменении климатических условнй. Смена эпох ииркуляционных процессов в атмосфере. Волность рек близка к среднемноголегней.

> Минимальшьй
> Минимальный уровень за инструментальный период (1977 г.). Ero аномалия - 2 м. Обеспеяенность 75% при повторяемости 20 раз и продолжительности стояния ниже среднего около 90 лет. Площаль моря снижается до 357,0 тыс, км ${ }^{2}$. При аномалин $-35,6$ тыс.км². Повышенная температура воздуха и воды. Ослабленный западный неренос воздушных масс при усиленном меридиональном. Пониженная водность циклонов и увлажненность бассейна. Низкая водность рек бассейна Воли и Урала. Повыненный сток рек Кавказского поберсжья. Низкий сток в Кара-Богаз-Гол.

Наименьший

Наиболее низкое стояние уровня за историческое время (2600 лет), которое фиксируется приблизительно 2250 и 1420 лет назад. Аномапия уровня отнасительного среднего составляет -7 m . При обеспеченности 99% и повторяемости за 2600 лет около 4 раз при продолжительности стояния ниже средвнего 50 -60 лет. Плошадь моря сокращается до 293,3 тыс. км. ${ }^{2}$ ири аномалии $-99,3$ тыс. км ${ }^{2}$. Эксгремально теплые климатические условия с высокой степенью засушливости. Преобладает меридиопатыный перенос воздушных масс. Облачность развита слабо. Ослабленная циклональная деятельность. Очень низкая водность рек. Большое испарение с поверхности моря, Из-за отсутствия притока каспийских вод в залив Кара-Богаз-Гол, он превращается в озеро и возможно полное его усыхание.

Рис. 1.1.1 Сценарии гидролого-климатических условий при характерных положениях уровня Каспийского моря. (Клите и др., 1998г.)

Относительно теплые климатические эпохи, как правило, одновременно отличались засушливостью (Клиге и др., 1998), с их наступлением усиливалась меридиональная циркуляция, снижалась активность циклонической деятельности над бассейном Каспия, уменьшался объем речного стока, а уровень моря понижался, в биологических

сообществах моря доминирующее положение занимали галофильные виды растений и животных.

Данных, позволяющих однозначно судить о том, как смена климатических эпох отражалась на биологической продуктивности Каспийского моря, очень мало. Впрочем, исходя из общих соображений и судя по содержанию органического вещества (OB) в осадках, образованных в периоды трансгрессии и регрессии моря (Лебедев и др., 1973), можно предполагать, что увеличение объемов речного стока способствовало увеличению продукции ОВ в море и его захоронению в донных отложениях. Органическое вещество, захоронившееся в осадках в период трансгрессии моря, отличается большей устойчивостью к разложению, что указывает на повышение доли в нем аллохтонного OB.

Общие соображения, упомянутые в предыдущем абзаце, основывается на том, что любая экосистема способна удержать в биогеохимическом круговороте, составляющем основу ее жизнедеятельности, лишь определенное количество вещества, соответствующее природным условиям, в которых она обитает. (Отметим, кстати, что эвтрофикация природных водоемов, обусловленная сбросом в них обогащенных биогенными солями сточных вод, как раз и представляет собой «освобождение» водных экосистем от излишков новообразованного органического вещества). У величение притока в Каспий биогенных элементов с речными водами, таким образом, должно компенсироваться их захоронением в донных отложениях, что, похоже, и происходило в геологическое время. В самом море, в трансгрессивную стадию его развития, должны прослеживаться черты эвтрофикации, что и наблюдалось в период последнего повышения уровня Каспия с 1978 по 1995 год (Салманов, 2000).

При переходе от межвековых к внутривековым изменениям климата (то есть при дальнейшем уменьшении временного масштаба), однозначная связь между характером атмосферной циркуляции, увлажнением и температурным режимом Каспийского бассейна перестает быть таковой. Связано это с тем, что в этом временном масштабе в составе меридиональной и зональной циркуляции выделяются несколько форм, при этом некоторые из них (как зональные, так и меридиональные) способствуют увлажнению, а другие осушению бассейна моря.

Для упрощения далее мы будем говорить о каспийской зональной и каспийской меридиональной атмосферной циркуляции, подразумевая под первой увеличение повторяемости выхода влажных атлантических циклонов на водосборный бассейн p.Волги, а под второй - отклонение путей их движения к северу или югу, под воздействием, соответственно, западно-сибирских или скандинавских антициклонов. Следует отметить, что каспийская зональная циркуляция может быть проявлением как зональных, так и меридиональных процессов в воздушном бассейне Атлантико-Европейского сектора Северного полушария (то же самое относится и к каспийской меридиональной циркуляции). Исследование сложных и многообразных связей каспийской атмосферной циркуляции с циркуляцией атмосферы в Атлантико-Европейском секторе Северного полушария к сожалению выходит за рамки этой книги.

Характерными чертами каспийской зональной циркуляции атмосферы (КЗЦА) являются относительно большой объем волжского стока в Каспий, повышение или стабильное состояние уровня моря, уменьшение повторяемости суровых (когда число гра-дусо-дней мороза больше 600) зим, ослабление ветра над акваторией моря.

Напротив, для каспийской меридиональной циркуляции атмосферы (КМЦА) характерны относительной низкий объем волжского стока, понижение уровня моря, увеличение повторяемости суровых зим и усиление скорости ветра над Каспием, особенно, ее меридиональной составляющей. Во второй половине двадцатого столетия наблюдалось две циркуляционные эпохи, 60 -е и 70 -е годы были эпохой КМЦА, а в последующие годы преобладала КЗЦА (Рис. 1.1.2). Черты, свойственные КМЦА, особенно ярко проявились в семидесятые годы, когда уровень моря опустился до минимальной от-

метки. Следует отметить, что в эти годы преобладала восточная, связанная с активизащией антициклонической деятельности над районами Западной Сибири и Северного Казахстана, форма КМЦА.

Рис. 1.1.2. Многолетние изменения объема волжского стока (куб.км, в/п Верхнее Лебяжъе), уровни моря (см), средней годовой скорости ветра (см/сек), повторяемости (\%) суровых (более 600 градусо-дней мороза) зим по данным ГМС Махачкала в 19611999 гг. Временные ряды сглажены скользящим средним ($1=5$ лет).

Интересно, что при уменьшении временного интервала, в пределах которого осушествляется взаимодействие окружающей среды и экосистемы Каспийского моря, усложняется и «дробится» на частные составляющие не только первая, но и вторая из них. На смену внутривековых циркуляционных эпох экосистема Каспия реагирует уже не как единое целое, тут в ней уже вполне определенно проявляются черты двух тесно взаимодействующих, но достаточно самостоятельных экосистем, относящихся к глубоководной (средней и южной) и мелководной (северной) частям моря.

Уменьшение речного стока в эпоху КМЦА обуславливает снижение тесно связанной с ним биологической продуктивности Северного Каспия, но продукция биологических сообществ глубоководной части моря в это время повышается, чему способствует усиление вертикальной циркуляции вод. Обычно в качестве основных причин последней указывается на плотностной сток и зимнюю конвекцию, усиливающиеся при осолонении Северного Каспия и увеличении повторяемости суровых зим (Каспийское море, 1986). Мы также придаем большое значение глубокому перемешиванию вод в системах сопряженных вихрей (Сапожников, 2000), формированию которых благоприятствует усиление меридиональной составляющей скорости ветра в эпоху КМЦА.

На наступление эохи КЗЦА экосистемы глубоководной и мелководной частей моря также реагируют прямо противоположным образом. В связи с ослаблением вертикальной циркуляции вод в глубоководной части моря биологическая продуктивность Среднего и Южного Каспия уменьшается. В то же время в Северном Каспии благодаря увеличению поступления биогенных элементов и органического вещества с речным стоком она, наоборот, возрастает.

Более детально реакция экосистемы и биологических сообществ Каспийского моря на изменения условий окружающей среды будет рассмотрена в следующем разделе книги. А здесь еще следует обратиться к исследованию гидрометеорологических условий Северного Каспия, где находится участок, отведенный ОАО «ЛУКОЙЛ» для поиска и разведки углеводородов, поскольку эти условия во многом определяют облик се-веро-каспийской экосистемы.

Касаясь метеорологических условий, следует отметить, что они, оказывая непосредственное воздействие на биоту суши, на состояние водных экосистем влияют, в основном, косвенным образом, участвуя в формировании теплового, водного, солевого, газового балансов и циркуляции вод природных водоемов.

Как уже отмечалось выше, специфические особенности метеорологического режима Каспийского моря в основном обусловлены его расположением в средних широтах Северного полушария, в центральной части Евразийского континента, что находит выражение в относительно большой амплитуде сезонной изменчивости метеорологических условий (Панин, 1987). Значительная протяженность моря в меридиональном и широтном направлении обуславливает ярко выраженную, даже в пределах Северного Каспия, пространственную неоднородность метеорологических характеристик (Каспийское море, 1969). На климат непосредственно Северного Каспия большое влияние оказывает также его расположение в пределах обширной Прикаспийской низменности с ее пустынным и полупустынным ландшафтом.

Особенности метеорологических условий Северного Каспия рассматриваются нами только в отношении температуры и влажности воздуха, атмосферных осадков, а также скорости и направления ветра, поскольку именно эти метеорологические факторы играют главную роль в формировании его гидрологического и гидрохимического режима (Каспийское море, 1986) и, тем самым, воздействуют на состояние обитающих здесь биологических сообществ.

Одной из ярких черт многолетней изменчивости температуры воздуха на Северном Каспии является ее постепенное повышение в течение двадцатого столетия, свидетельствующее о происходившем в этот период потеплении климата Северного Каспия (Гидрометеорология и гидрохимия, 1992).

Свойственные климату Каспийского моря континентальные черты в наибольшей степени проявляются в Северном Каспии и лучше всего отражены в сезонной изменчивости температуры воздуха. Разность между температурой воздуха самого холодного и самого теплого месяца в западной части Северного Каспия (о. Тюлений) составляет 27,6 градуса, а в восточной (о. Кулалы) - 30,4 градуса. Разность между абсолютным максимумом и минимумом температуры воздуха и того больше, в западной части она равна 65, а в восточной 68 градусам (Гидрометеорологические условия, 1986). В центральном районе Северного Каспия, благодаря влиянию подстилающей поверхности, размах сезонных колебаний температуры воздуха меньше, чем в прибрежных районах, об этом, в частности, свидетельствуют, рассчитанные для площади «Хвалынская» (НТО «Инженерно-гидрометеорологические изыскания», 1999) средние и экстремальные значения температуры воздуха (Таблица 1.1.2).

Разница между максимальной и минимальной температурой воздуха на структуре «Хвалынская» составляет 65 градуса, то есть она 3 градуса ниже, чем в восточной части Северного Каспия.

Амплитуда суточного хода температуры воздуха на Северном Каспии увеличивается от зимы, когда она составляет 2-3 градуса, к лету, когда она достигает 5-7 градусов. В центральной части Северного Каспия она меньше, чем в прибрежных районах. В открытых районах моря максимум в суточном ходе температуры воздуха весной и летом наступает на 1-2 часа позже, а зимой и осенью на столько же раньше, чем на побережье (Гидрометеорология и гидрохимия, 1992).

Пространственные различия в температурном режиме между различными районами Северного Каспия проявляются не только в размахе сезонной и суточной изменчивости температуры воздуха, как это показано выше, но также в средних годовых и месячных температурах воздуха. Зимой температура воздуха увеличивается от востока к западу и с севера на юг, например, разность в средней январской температуре воздуха между о.Тюлений и о.Кулалы составляет 2,5 градуса.

Таблица 1.1.2
Расчетная средняя и экстремальная температуры воздуха на структуре «Хвалынская»

| $\begin{array}{l}\text { Харакге } \\ \text { ристика }\end{array}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$)$

Летом различия в температуре воздуха между районами Северного Каспия сглаживаются, но небольшое, в пределах полутора градусов, увеличение температуры воздуха прослеживается в направлении с юга на север и с запада на восток. Следует также отметить, что средняя годовая температура воздуха в западной части Северного Каспия на 1-2 градуса выте, чем в восточной.

В научной литературе отсутствуют сведения о многолетних изменениях абсолютной (е, гм/м ${ }^{3}$) и относительной ($f, \%$) влажности воздуха. Однако, учитывая, что в долгопериодных процессах изменения температуры и абсолютной влажности воздуха носят однонаправленный характер (Панин, 1987), можно предполагать, что отмеченное выше повышение температуры воздуха в районе Северного Каспия в двадцатом столетии было сопряжено с некоторым увеличением содержания водяного пара в приводном слое атмосферы над этой частью Каспийского моря.

Представление о сезонной изменчивости абсолютной и относительной влажности воздуха дают обобщенные данные наблюдений на о.Тюлений и о.Кулалы (Таблица 1.1.3).

Размах сезонных колебаний абсолютной влажности воздуха составляет 16,4 гм $/ \mathrm{m}^{3}$ в западной части Северного Каспия и $17,3 \mathrm{rm} / \mathrm{m}^{3}$ в восточной, для относительной влажности воздуха он равен, соответственно, 23% и 22%. В прибрежных районах размах сезонных колебаний влажности воздуха больше, чем в открытой части моря, у Западного побережья Северного Каспия он достигает $25-30 \%$, а у Восточного - $30-35 \%$.

Амплитуда суточных колебаний относительной влажности воздуха в зимние месяцы, особенно, над ледяным покровом, не превышает 10%, а в летнее время она увеличивается в несколько раз, достигая максимальных значений ($40-50 \%$) в прибрежных районах. В открытой части моря наибольшая, наблюдающаяся в июле-августе амплитуда суточных колебаний влажности воздуха по своему значению равна размаху сезонных колебаний.

Самой яркой чертой пространственной изменчивости влажности воздуха на Ce верном Каспии является сгущение ее изолиний, наблюдающееся в его восточной части во все сезоны года, за исключением зимы, благодаря проникновению сюда сухого воздуха с прилегающих к побережью моря пустынь. Различие в относительной влажности воздуха между прибрежными и открытыми районами Северного Каспия может достигать $25-30 \%$. Следует также отметить, что из-за отмеченного выше влияния пустынь среднегодовая влажность воздуха в восточной части Северного Каспия меньше, чем в западной (Гидрометеорология и гидрохимия, 1992).

Абсолютная и относительная влажность воздуха, Северный Каспий

Пара= метр	Месяцы												Гos
	1	2	3	4	5	6	7	8	9	10	11	12	
о.Тюлений													
e. $\mathrm{rm} / \mathrm{m}^{3}$	5,0	4,9	6,1	9,6	14.1	18,4	21.4	20,9	16,2	11.4	8.2	6,2	11.9
f. \%	91	91	88	77	73	68	70	71	75	80	86	90	80
о.Кулаты													
$\mathrm{e}, \mathrm{rm} / \mathrm{m}^{3}$	4.3	4,2	5,6	9,3	14,3	18.7	21.6	20.3	14.9	10.0	6.9	5.1	11.2
f. \%	87	86	82	73	67	65	66	66	69	74	81	86	75

Наиболее характерной чертой многолетней измевчивости атмосферных осадков Северного Каспия является постепенное уменьшение их годовой суммы в течение двадиатого столетия. В теплый период года переход от относительно влажного к относительно засушливому режиму наиболее ярко проявился уже в 50 -х годах, в холодный период - в $60-\mathrm{x}$ (по данным наблюдений на ГМС Махачкала). Наиболее засушливыми были 70 -е годы. В дальнейшем сумма осадков стала увеличиваться, но это увеличение нока не компенсировало отрицательную тенденцию, зафикснрованную в течение двадцатого столетия (Рис. 1.1.3). Размах многолетней изменчивости суммы осадков достаточно велик, разница между сухим и влажным годом на Северном Каспии, как, впрочем, и в других частях Каспийского моря может достигать нескольких тодовых норм.

Рис. 1.1.3. Многолетние изменения годовой суммы осалков (мм) в северозападной части Каспийского моря по данным наблюдений на ГМС Махачкала

Судя но среднемесячным значениям суммы атмосферных осадков (Таолица 1.1.4) амплитуда ее сезонной изменчивости на Северном Каспии составляет всего 5-10 мм, что на два порядка меньше амплитуды многолетних колебаний. То же самое можно сказать и о размахе суточной изменчивости суммы осадков, хотя во время летних ливней, кстати, довольно редких на Северном Каспии, в течение нескодьких часов может выпасть 1-2 месячные нормы осадков.

Для пространственной изменчивости суммы осадков Северного Касния характерно ее уменьшение с запада на восток и с юға на север, при этом в районах с относительно сухим климатом размах временной (суточной, сезонной, многолетней) изменчивости суммы осадков меныше, 耳ем в относнтельно влажных.

Таблица 1.1.4
Количество осадков, мм, Северный Каспий

Станция	Месяцы												Год
	1	2	3	4	5	6	7	8	9	10	11	12	
о.Искусствен ный	12	11	10	12	13	15	10	13	13	10	14	13	156
о.Тюлений	10	9	9	14	23	11	15	13	15	16	14	14	163
о.Кулалы	9	10	10	14	14	19	14	14	16	12	11	17	174
о.Пешной	9	8	9	10	12	14	14	12	11	10	11	14	134

Многолетняя изменчивость полей ветра над Северным Каспием тесно связана со сменой циркуляционных эпох в Атлантико-Европейском секторе Северного полушария (Монахов, Магомедов, 1997). В эпоху с преобладанием каспийской меридиональной циркуляции атмосферы средняя годовая скорость достигает наибольших значений и увеличивается повторяемость ветров северных и восточных румбов. В эпоху с преобладанием каспийской зональной циркуляции атмосферы над Каспием преобладает малоградиентное поле атмосферного давления, средняя годовая скорость достигает наименьших значсний и увеличивается повторяемость ветров западных румбоов. Размах многолетних колебаний средней скорости ветра в полтора-два раза превышает размах ее сезонной изменчивости (Табллца 1.1.5).

Таблица 1.1.5
Средняя месячная и средняя годовая скорость ветра (м/с) и пределы их изменения, Северный Каспий

Харак-	Месяцы												Год
теристика	1	2	3	4	5	6	7	8	9	10	11	12	
о. Тюлений													
Средн.	5.8	6.1	5,9	6.2	5,8	5.2	4,9	5,1	5,3	5,7	6,0	5.8	5,7
Мин.ср.	3,8	3.6	3,8	4,2	4.1	3.5	3.7	2.9	3,3	3,0	3.6	4.2	4.5
Maкc.cp.	8,4	10,1	8.9	8.9	9,4	7.4	7.0	6,6	7.7	7.3	9.7	9.0	7.2
Форт-Шевченко													
Средн.	7.2	7,3	7,0	6,7	5,9	5,6	5,3	5,5	6,2	6,6	7.5	7,1	6,5
Мин.ср.	4,5	2,0	3.5	3,9	2.7	3,6	3,0	2,1	3,6	4,1	4,7	5,0	4,1
Макс.cp.	11.8	12,9	12,9	11,9	9.5	8.9	9,8	8,8	10,4	10,2	12,9	11,0	9,4

Размах сезонной изменчивости средней месячной скорости ветра на Северном Каспии составляет всего $1-2 \mathrm{~m} / \mathrm{c}$, при этом у его восточного побережья он больше, чем у западного. Касаясь сезонной изменчивости направления ветра, следует отметить, что в течение года над Северным Каспием преобладают ветра восточных румбов (СВ, В, ЮВ), наибольшая повторяемость которых наблюдается весной и осенью. Летом и зимой увеличивается повторяемость западных и северо-западных ветров, но при этом она все равно не превышает повторяемости восточных ветров (Гидрометеорологические условия, 1986).

Поскольку при возникновении штормов на Северном Каспии своей максимальной скорости ветер может достичь в течение нескольких часов после начала шторма, то самое лучшее представление об амплитуде суточных колебаний скорости ветра можно получить, основываясь на максимальном значении последней, которое, как показывают расчеты, на структуре «Хвалынская» может достигать 35-40 м/сек. Очевидно, что размах суточных колебаний скорости ветра значительно больше амплитуды ее сезонной и многолетней изменчивости.

Из расчетных данных также следует, что повторяемость штормовых ветров в западной части Северного Каспия больше, чем в восточной, в среднем за год и во все сезоны года, за исключением лета. В западной части выше, чем в восточной, также вероятность возникновения западных, восточных и особенно, юго-восточных штормов, причем в летнее время последние в восточной части моря вообще не наблюдаются. Указанные части Северного Каспия не отличаются друг от друга по среднегодовой повторяемости северо-западных штормов, при этом в первую половину года они чаще наблюдаются у западного побережья, а во вторую - у восточного.

Пространственно-временная изменчивость метеорологических условий оказывает существенное влияние на динамику среды обитания и, тем самым, на изменения структуры и жизнедеятельности биологических сообществ Северного Каспия. Из анализа временной изменчивости метеорологических условий на акватории Северного Каспии следует, что наибольший вклад в нее вносят сезонные колебания, размах которых выше амплитуды суточной и многолетней изменчивости. Это правило не касается разве что средней скорости ветра, но зато вполне применимо к повторяемости сильных и штормовых ветров. Сезонные колебания метеорологических условий в различных частях Северного Каспия, носят однонаправленный, синхронный характер, хотя и могут отличаться между собой по амплитуде. Очевидно, что именно сезонная изменчивость метеорологических условий в наибольшей степени оказывает влияние на состояние морских биологических сообществ Северного Каспия.

Количество научных публикаций, посвященных гидрологическому режиму Ce верного Каспия и его влиянию на состояние биологических сообществ и биологическую продуктивность этой части моря исчисляется сотням и тысячами (Биологическая продуктивность, 1974; Каспийское море, 1989). Огромный материал по этой проблеме был собран в исследованиях ОАО «Лукойл» по экологическому обоснованию нефтегазодобывающей деятельности.

Специфические особенности гидрологического режима Северного Каспия обусловлены характерными метеорологическими условиями (см. выше) и исключительной мелководностью этой части моря, что важно само по себе, а также обуславливает тесную связь гидрологических условий Северного Каспия с колебаниямі уровня моря. Однако, первой «скрипкой» в формировании гидрологического режима безусловно является речной сток, ежегодный объем которого (250 км 3) вполне сопоставим с объемом вод этой части моря ($400 \mathrm{\kappa м}^{3}$). Вследствие этого акватория Северного Каспия почти вся относится к устьевому взморью Волги, морская граница которого обозначена изогалиной 11 промилле (Устьевая область, 1998).

Далее в качестве гидрологических условий экосистемы Северного Каспия рассмотрим температуру, соленость и циркуляцию вод, оказывающие непосредственное воздействие морскую биоту. Изменчивость речного стока и уровня моря будем рассматривать лишь в той мере, в которой она влияет на эти условия.

Одной из ярких черт многолетней изменчивости температуры воды, так же, как и температуры воздуха, на Северном Каспии является ее постепенное повышение в течение двадцатого столетия (Родионов, 1989). Нами был проанализирован один из самых длинных и непрерывных рядов наблюдений за температурой морской воды (ГМС Махачкала, 1991-1999 гг.). В связи с этим следует отметить, что шельфовые воды Дагестана, средняя соленость которых составляет 10,4 промилле, также относятся к устьевому взморью Волги. В течение восьмидесяти лет средняя годовая температура воды здесь повысилась на 0,3 градуса (Рис.1.1.4). Наиболее интенсивным ее повышение было в зимний сезон (на 0,8 градуса), средняя весенняя и средняя летняя температура также повысилась, но всего на 0,4 градуса. Интересно, что в осенний сезон температура воды, наоборот, понизилась (также на 0,4 градуса).

Рис. 1.1.4 Многолетние изменения средней годовой температуры морской воды в северо-западной части Каспийского моря по данным наблюдений на ГМС Махачкала

Наряду с повышением температуры воды отмечено уменьшение амплитуды ее межгодовых и внутригодовых колебаний, что свидетельствует о происходившем в течение двадцатого столетия потеплении и уменьшении континентальности климата Северного Каспия. Предполагается, что на амплитуду внутри- и межгодовых колебаний температуры воды в этой части моря влияют многолетние изменения уровня моря, она увеличивается в стадию регрессии и уменышается при трансгрессии моря (Архипова, 1959). Наибольший вклад в многолетнюю изменчивость температуры воды Северного Каспия вносят колебания с периодом $4-5$ лет.

Сезонная измененчивость температуры воды во многом схожи с сезонной изменчивостью температуры воздуха Северного Каспия. Разность между средней месячной температурой воды самого холодного и самого теплого месяца в западной части Северного Каспия (о.Тюлений) составляет 25,0 градуса, а в восточной (о.Кулалы) - 26,1 градуса. Разность между абсолютным максимумом и минимумом температуры воздуха и того больше, в западной части она равна 41,6 , а в восточной 35,4 градуса (Гидрометеорологические условия, 1986). В центратьном районе Северного Каспия, где теплообмен между морем и атмосферой не столь интенсивен, как на мелководье, размах сезонных колебаний температуры воды меньше, чем в прибрежных районах, об этом, в частности, свидетельствуют, рассчитанные для структуры «Хвалынская» средние месячные значения температуры воды (Таблица 1.1.6)

Размах сезонных колебаний температуры воды в Северном Каспии уменьшается не только в направлении от берега к морю, но и от поверхности ко дну. Речной сток также оказывает влияние на сезонный ход температуры воды, увеличивая его амплитуду, но это влияние ограничивается только отмелым взморьем Волги. Зарегулирование волжского стока, отразившееся на сезонных изменениях уровня моря, тем самым сказалось и на сезонном ходе температуры морских вод, интенсивность прогрева и охлаждения которых вследствие этого уменьшилась.

Амплитуда суточного хода температуры воды на Северном Каспии в зимний период составляет десятые доли градусов, а своих максимальных значений (3-4 градуса) достигает в периоды наиболее интенсивного прогрева (апрель-май) и охлаждения (сен-

тябрь-октябрь) морских вод (Гидрометеорология и гидрохимия, 1992). В центральном районе Северного Каспия она меньше, чем в прибрежных районах, где на мелководье размах суточных колебаний температуры воды может достигать 7-8 градусов. Следует отметить, что в летнее время в приглубых районах Северного Каспия в придонном слое, благодаря проникновению сюда холодных придонных средне-каспийских вод, амплитуда сугочного хода температуры воды может достигать 10 и более градусов (Скриштунов, 1958). Относительно большой размах суточной изменчивости температуры воды оказывает существенное воздействие на баланс продукционнодеструкционных процессов в экосистеме Северного Каспия.

Таблица 1.1.6
Средняя месячная температуры воды на структуре «Хвалынская»

Горизонт	Месяцы										
	2	3	4	5	6	7	8	9	10	11	12
0 метров	3,8	3.5	8,3	18,6	20,8	24,0	24.4	20,1	16,1	10,5	7.5
5 метров	3,9	3.6	7.8	18,1	20,4	22,7	24,1	20,1	16,0	10,5	7.8
10 метров	3,9	3,7	7.3	17,7	18,9	21,2	23,9	20,1	16,0	10.5	7.9
15 метров	4,0	3,7	7,0	16,7	17,4	18,9	19.6	19,9	16,0	12,9	10,5

Пространственные различия в температурном режиме между различными районами Северного Каспия проявляются не только в размахе сезонной и суточной изменчивости, как это показано выше, но также в средних годовых и месячных температурах воды. В зимний и летний сезоны горизонтальное (а в первый из них также вертикальное) распределение температуры воды носит однородный характер. Весной и осенью температура воды в восточной части моря на несколько градусов ниже, чем в западной, благодаря чему аналогичное пространственное распределение носит среднегодовая температура воды. 12 -градусная изотерма среднегодовой температуры от о. Искусствснный следует на юго-восток до о.Кулалы. К востоку от нее средняя годовая температура воды понижается и у Восточного побережья Северного Каспия составляет 10,410,6 градуса, к западу же она, наоборот, повышается, достигая у Западного побережья 13 градусов (Гидрометеорологические условия, 1986).

Одной из ярких черт пространственной неоднородности поля температуры воды на Северном Кастии являются значительные горизонтальные градиенты ее, формирующиеся в придонном слое в летний период. Сгущение изотерм происходит в районе свала глубин. Соответственно, в приглубых районах наблюдается вертикальная неоднородность поля температуры воды, причем разность между температурой воды поверхностного и придонного слосв может достигать 10 и более градусов. По данным расчетов в слое термоклина вертикальный градиент температуры воды может достигать 0,03 град/см.

Из всех черт гидрологического режима Северного Каспия соленость изучена, пожалуй, лучше всего, что связано с огромной ролью, которую она играет в жизнедеятельности биологических сообществ этой части моря, в формировании ее биологической продуктивности.

Практически во всех диапазонах пространственно-временной изменчивости солености, за исключением высокочастотных колебаний на Северном Каспии можно проследить ее более или менее прочную связь с поверхностным стоком. Это вполне понят-

но, учитывая что объем последнего и объем северо-каспийских вод являются величинами одного порядка.

Многолетними изменениями объема волжского стока обусловлены не только изменения солености но и площади распресненной (0-8 промилле) зоны Северного Каспия (Таблица 1.1.7). За период с 1931 по 1989 год среднегодовая соленость Северного Каспия изменялась в пределах от 11,72 до 6,44 промилле, то есть размах составил 5,28 промилле. Следует отметить, что в условиях квазистационарного водно-солевого баланса (1956-1970 гг.) амплитуда межгодовых колебаний солености была значительно меньше - всего 2,2 промилле (Гидрометеорология и гидрохимия, 1992). Известно также, что при уменьшении объема волжского стока и, соответственно, понижении уровня моря, уменьшается поступление волжских вод в восточную половину Северного Каспия. Вследствие этого здесь размах многолетних колебаний солености морских вод (6,25 промилле) почти в два раза больше, чем в западной части Северного Каспия (3,68 промилле).

Таблица 1.1.7
Уровень моря, речной сток, соленость и площадь опресненных зон Северного Каспия по данным многолетних наблюдений (Научные основы, 1998)

Годы	Уровень моря	Годовой сток, куб.км		Соленость, промилле		Площадь опресненных (0-8 промилле) зон, тыс.кв.км		
	м абс	Волаа	Урал	Запад	Восток	Запал	Восток	Ссв.Касп.
$1959-71$	$-28,3$	232	8,5	9,27	6,77	25,8	25,7	51,5
$1972-80$	$-28,6$	225	5,6	9,55	8,24	27,7	19,5	47,2
$1981-85$	$-28,2$	252	8,0	9,09	8,23	24,1	26,0	50,2
$1985-90$	$-27,6$	271	9,7	8,78	6,42	20,4	42,6	63,0
$1990-95$	$-26,8$	294	10,6	7,75	5,10	19,2	56,6	75,8

Амплитуда сезонной изменчивости солености несколько меньше размаха ее многолетних колебаний, но в зоне, где воздействие речного стока велико это вполне сопоставимые величины. В западной части Северного Каспия амплитуда сезонной изменчивости солености, равная в среднем 1,6 промилле, больше, чем в восточной, где она составляет 0,7 промилле. По данным изысканий (НТО «Инженерногидрометеорологические изыскания», 1999) размах сезонных колебаний солености на структуре «Хвалынская» достигает 1,7 промилле, при этом он уменьшается от поверхности ко дну (Таблица 1.1.8).

Размах суточных колебаний солености своих наибольших значений достигает в поверхностном слое воды в районе свала глубин устьевого взморья Волги. Здесь известны случаи, когда соленость за 3 часа увеличивалась на 4 промилле (Скриштунов, 1958). На мелководье и в приглубых районах размах суточных колебаний солености не столь велик.

Как уже указывалось, пространственная изменчивость солености Северного Каспия находится в тесной зависимости от речного стока. В свою очередь пространственное распределение речного стока зависит от большого числа факторов, в том числе расходов и уровней воды в водотоках дельты, уровня моря, берегового и донного рельефа, метеорологических условий, циркуляции вод (Полонский и др., 1992). В итоге пространственное распределение солености в Северном Каспии носит крайне неоднородный характер, не смотря на что ему свойственны постоянные черты. Одной из них является увеличение солености по мере удаления от устьев рек (следует отметить, что оно носит неравномерный характер, сгущение изогалин наблюдается в районе свала глу-

бин), а второй - относительно низкая соленость в восточной части Северного Каспия по сравнению с западной. Причем последняя закономерность проявляется и в маловодные годы (Таблица 1.1.7).

Пространственной изменчивости подвержены не только средние значения солености, но и, как отмечалось выше, амплитуда временных колебаний. Более того, указанные изменения затрагивают и другие параметры временного распределения солености (симметрию, эксцесс и т.п.). Так в сезонном ходе солености в зоне, где влияние речного стока велико, максимум опреснения наблюдается в июне-августе, а в зоне, где влияние речных вод нивелируется воздействием ветровых течений, наибольшее опреснение вод происходит осенью (Гидрометеорология и гидрохимия, 1992).

Таблица 1.1.8
Средняя месячная соленость воды на структуре «Хвалынская»

Горизонт	Месяцы											
	2	3	4	5	6	7	8	9	10	11	12	
0 метров	12,81	12,79	12,83	11,48	11,58	11,10	11,80	12,15	11,97	12,58	12,84	
5 метров	12,81	12,78	12,85	11,71	11,83	11,42	11,90	12,15	11,95	12,62	12,83	
10 метров	12,82	12,79	12,86	12,02	12,57	11,97	11,98	12,16	11,95	12,66	12,85	
15 метров	12,86	12,81	12,86	12,33	12,72	12,47	12,28	12,21	11,94	12,68	12,88	
20 метров	12,91	12,88	12,88	12,81	12,81	12,74	12,60	12,72	11,95	12,64	12,92	

В районе свала глубин устьевого взморья Волги наблюдаются как наибольшие горизонтальные, так и наибольшие вертикальные градиенты солености. При проведении комплексных исследований для экологического обоснования нефтегазодобывающей деятельности, которые включали в себ́я вертикальное зондирование морских вод, было показано, что вертикальные градиенты солености в формирующемся здесь галоклине могут достигать 0,05 промилле/см.

Выше было показано, что амплитуда временной изменчивости солености достигает своих наибольших значений в районе свала глубин, то есть там же, где наиболее ярко проявляется пространственная неоднородность. Из приведенных выше данных следует также, что временной ход солености сглаживается там, где ее пространственное распределение становится однородным. Таким образом, в Северном Каспии наблюдается определенное соответствие между размахом временных и пространственных колебаний солености. Очевидно, что основой указанной закономерности является свойственное Северному Каспию активное взаимодействие вод различного происхождения.

Циркуляция вод в Северном Каспии, определяющая пространственно-временное распределение минеральных и питательных (биогенных) солей, играет важную роль в формировании его биологических ресурсов (Каспийское море, 1985). Характер течений на Северном Каспии определяется в основном воздействием речного стока и ветра, в прибрежных районах большое значение имеет также форма береговой черты, а в придонных слоях - форма донного рельефа (Гидрометеорологические условия, 1986). Как показывают расчеты, в районах, отведенных для поиска, разведки и добычи углеводородного сырья основным фактором формирования течений является ветер, но определенную роль играет также плотностная стратификация вод.

Многолетние изменения циркуляции вод в Северном Каспии плохо изучены, однако, известно, что при средней годовой скорости, равной в большинстве районов 14-18 см/с, размах ее межтодовых колебаний составляет в среднем $5 \mathrm{~cm} / \mathrm{c}$ (Гидрометеорология и гидрохимия, 1992). Такова же в среднем амплитуда сезонных колебаний скорости течений (Таблица 1.1.9).

Следует отметить, что размах сезонных изменений скорости течений уменьшается от поверхностного слоя к придонному. Характер сезонной изменчивости скорости те-

чений хорошо согласуется с характером сезонных изменений скорости ветра, что подтверждает тесную зависимость первой от второй.

Принято считать, что многолетние и сезонные изменения направления преобладающих течений также определяются изменчивостью полей ветра над Северным Каспием (Гидрометеорология и гидрохимия, 1992). Весной и осенью, а также в циркуляционные эпохи с преобладанием восточной формы КМЦА увеличивается повторяемость восточных и юго-восточных ветров. При этом преобладает перенос вод из восточной части Северного Каспия в западную, а оттуда в Средний Каспий, который компенсируется поступлением среднекаспийских вод в восточную часть. В летнее время и в тешлые зимы, когда устойчивый ледяной покров на Северном Каспии не образуется, а также в циркуляционные эпохи с преобладанием КЗЦА увеличивается повторяемость западных и северо-западных ветров. В это время преобладающим становится перенос вод из западной в восточную часть Северного Каспия, который компенсируется подтоком в придонном слое средне-каспийских вод на устьевое взморье Волги. Здесь (то есть опять же на свале глубин) в этот период течения в поверхностном и придонных слоях направлены в противоположные стороны, в этом случае своих максимальных значений достигает вертикальный градиент скорости течений.

Таблица 1.1.9
Среднемесячные скорости течений (см/с) в районе свала глубин взморья Волги (Астраханский приемный плавмаяк)

Гори-	Месяцы								
зонт, м	4	5	6	7	8	9	10	11	неед-
0	19,0	17,9	16,8	14,7	13,2	15,0	14,3	14,8	15,7
5	16,6	16,5	16,0	14,2	14,3	15,5	14,2	14,1	15,2
9	11,4	11,9	10,1	8,0	9,8	13,1	12,8	12,0	11,1

При возникновении штормов максимальная скорость течений может установиться уже через несколько часов после их начала, при этом направление течения также может поменяться на прямо противоположное. Следовательно, представление о размахе суточных колебаний скорости течений можно получить, исходя из ее максимальных значений, которые по данным расчетов (НТО «Инженерно-гидрометеорологические изыскания», 1999) могут достигать 100 и более см/сек.

Пространственная изменчивость скорости и направления течений относительно велика при слабых и умеренных ветрах, когда устойчивый перенос водных масс в ка-ком-либо направлении отсутствует. При сильных и штормовых ветрах течения в поверхностном слое по всей акватории Северного Каспия, за исключением прибрежных районов и отмелого взморья Волги, приобретают однонаправленный характер. При этом направление и скорость компенсационных течений в придонном слое в разных районах могут довольно существенно отличаться (Скриптунов, 1958).

Для оценки текущих изменений состояния окружающей среды в районах, отведенных для нефтегазодобычи, важно, что при устойчивых по направлению сильных ветрах, направление переноса вод также стабилизируется, при этом за период действия ветра водные массы могут проделать путь равный нескольким десяткам километров, а при штормовых ветрах - даже и более того. Следовательно, в этих районах, расположенных в центральной части Северного Каспия, возможно появление водных масс, существенно отличающихся по своему происхождению, химическому составу и загрязненности от характерных для района, что не может не отражаться на состоянии обитающих здесь биологических сообществ. При этом влияние на биоту динамики вод может быть более мощным, чем воздействие нефтегазодобывающей деятельности.

Итак, мы проследили, насколько это было необходимо, за изменениями физикогеографических условий Каспийского моря в различных масштабах времени и пространства. Это в дальнейпем существенно облегчит решение нашей главной задачи по оценке изменений окружающей природной среды на структуре «Хвалынская» при проведении на ней изыскательских и геологоразведочных работ. Учитывая достаточно узкие пространственно-временные рамки проведения этих работ, следует предполагать, что из всех рассмотренных нами физико-географических условий наибольшее внимание в дальнейшем следует уделить (так же, как мы это уже сделали) гидрометеорологическим условиям, не только потому, что они играют важную роль в жизни морских биологических сообществ моря, но и потому, что в этих рамках они отличаются наибольшим размахом изменчивости, а следовательно и воздействием на состояние морских экосистем.

