суточных станциях имеет определенную цель. Так, наблюдения на разрезах I и X (дополнительном) характеризуют влияние рек Урала и Волги на восточную часть Северного Каспия. Данные, полученные на разрезах III (вековом), XII и III (дополнительном), определяют влияние волжского стока на западную часть Северного Каспия и выявляют проникновение вод из Среднего Каспия в Северный. Разрез II (вековой) является пограничным между восточной и западной частями Северного Каспия и характеризует водообмен между ними. Разрезы выполнялись четыре раза в год: в апреле (предпаводочный период), мае (начало половодья), июле (наибольшее влияние волжского стока на Северный Каспий) и сентябре-октябре (период надвигания соленых вод из Среднего Каспия на Северный). Кроме работ на стандартных разрезах, проводились синхронные наблюдения на многосуточных (пятисуточных) станциях в различных районах Северного Каспия. Наблюдения на станциях III и XIV дают возможность судить о кратковременных изменениях различных гидрохимических характеристик в районе непосредственного влияния волжского стока; на станции V — о кратковременных изменениях в районе водообмена между западной и восточной частями Северного Каспия; на станции VII — о кратковременных изменениях в районе свала глубин.

В настоящей работе используются материалы экспедиции AГМО за 1961—1963 гг., привлекаются опубликованные материалы предшествующих исследователей, а также неопублико-

ванные материалы Иванова.

Глава II

химический сток волги

Изучением химического стока Волги занимались многие исследователи. Наиболее крупные работы в этой области написаны О. А. Алекиным (1948), А. А. Зениным (1961, 1964) и Л. А. Барсуковой (1962). Начиная с 1953 г. АГМО проводит сбор проб на химический состав воды в створе поста Верхне-Лебяжье. В данном разделе дается анализ полученных материалов и сделана попытка показать те изменения, которые произошли в химическом стоке в результате зарегулирования реки.

В табл. 2 и 3 приведены данные по ионному составу воды Волги до и после зарегулирования стока. Из таблиц видно, что общая минерализация воды Волги за три года, предшествовавших зарегулированию ее стока, и за три года после зарегулиро-

вания различается мало.

Таблица 4 характеризует изменение ионного стока Волги до и после зарегулирования. Суммарный ионный сток в период

Tаблица 2 Средний ионный состав воды Волги (мг/л) за три года (1953—1955), предшествовавших зарегулированию стока

Месяц	Расход воды, м ³ /сек.	Ca"	Mg"	Na'+K'	HCO ₈ ′	SO ₄ "	CI'	Σ нонов	
111 1V V VI VII VIII X	4 570 7 250 19 700 20 860 9 280 5 150 5 650	63,2 61,8 33,6 30,1 47,6 46,4 65,4	13,0 13,1 6,9 6,0 10,3 11,0 18,4	2,8 16,6 11,0 8,5 7,2 11,2 7,5	144,6 148,9 97,8 80,6 121,8 109,8 142,8	60,4 70,4 35,0 32,9 50,2 59,1 82,6	25,0 32,2 12,6 11,8 16,7 22,7 35,7	309,0 343,0 196,9 169,9 253,8 260,2 352,4	
Сумма	72 460								
Среднее		49,7	11,2	9,3	120,9	55,8	22,4	269,3	

Tаблица 3 Средний ионный состав воды Волги (мг/л) за три года после зарегулирования стока (1961—1963 гг.)

Месяц	Расход воды, м ³ /сек.	Ca**	Mg"	Na·+K·	HCO ₃ '	SO ₄ "	Cl'	Σ ионов
I IV V VI VII X XI XI	4 700 8 500 19 500 12 730 6 100 5 490 5 500 5 570	46,4 59,3 54,9 39,8 37,2 37,7 42,3 46,9	9,50 14,0 12,1 6,2 7,0 6,9 8,1 6,8	15,2 18,5 18,6 10,0 10,8 16,7 13,9 18,1	114,9 143,7 136,8 99,4 90,7 93,3 108,3 115,4	51,8 77,0 61,5 39,0 40,3 37,4 46,4 52,7	26,2 31,6 34,1 19,5 19,0 28,7 21,1 22,0	264,0 344,1 318,0 213,9 205,0 220,7 240,1 261,9
Сумма	68 090							
Среднее		45,6	8,8	15,2	112,8	50,8	25,2	258,4

Таблица 4 Средний годовой ионный сток Волги (в тыс. т.) до зарегулирования (1953—1955 гг.) и после зарегулирования (1956—1963 гг.)

Годы	Ca"	Mg"	Na'+K'	HCO3'	SO ₄ "	Cl'	Σ ионов
1953—1955	11 230,6	2347,3	2916,1	29 884,0	12 146,4	4699,5	62 949,2
1956—1963	10 808,8	2331,7	3705,2	26 715,2	11 800,0	6537,2	61 950,0

после зарегулирования несколько снизился. Несколько перераспределился химический сток. Хотя карбонаты в ионном стоке продолжают преобладать, но содержание их в период после зарегулирования снизилось. Как по данным Зенина (1964), так и по данным АГМО в период после зарегулирования в ионном стоке увеличилось содержание хлоридов и щелочных металлов. Автор объясняет увеличение хлоридов и щелочных металлов в реке разработками калийных месторождений на Каме и сбросом промышленных и бытовых сточных вод.

По данным А. П. Цуриковой (1964), состав растворенных веществ Дона после зарегулирования также изменился. Относительно уменьшилось количество растворенных карбонатов и кальция и увеличилось содержание ионов магния, натрия и сульфатов. Что касается процентного состава растворенных веществ, то как в Дону, так и в Волге во все сезоны года он рас-

пределился более равномерно (табл. 5).

 Таблица 5

 Ионный состав (% от суммы ионов) солевого стока Волги в различные сезоны года до и после зарегулирования водного стока

С	езо	Н		Ca"	Mg"	Na'+K'	HCO ₃ '	SO ₄ "	Cl'	Σ ионов
			Д	(о зарегу	лировані	ия стока	(1953—1	955 rr.)		
Зима . Весна . Лето . Осень .			 	18,5 18,1 18,6	3,8 4,0 5,2	3,5 3,9 2,1	46,8 45,6 40,6	19,3 20,8 23,4	8,1 7,6 10,1	100 100 100
Среднее			.	18,4	4,3	3,2	44,3	21,2	8,6	100
			По	сле зарег	гулирова	ния стока	(1961—	1963 rr.)		
Зима . Весна . Лето . Осень .			 	17,8 17,3 18,4 17,3	3,1 3,9 3,1 3,3	6,3 5,6 5,0 6,6	43,8 42,4 45,4 43,8	19,8 20,9 18,9 18,2	9,2 9,9 9,2 10,8	100 100 100 100
Среднее				17,7	3,4	5,9	43,8	19,4	9,8	100

Средние годовые величины элементов химического стока реки колеблются за 1952-1963 гг. весьма существенно от года к году: Са \cdot — от 35 до 54 мг/л; HCO_3' — от 95 до 135 мг/л; SO_4'' — от 41 до 61 мг/л, общая минерализация — от 231 до 300 мг/л.

Известно, что химический состав вод реки изменяется под влиянием в основном геологических, гидрологических, почвенных и климатических условий бассейнов этих рек.

Наиболее резкие изменения солевого состава наблюдаются в период половодья и межени. Соответственно этому пробы воды на полный химический анализ отбирались с расчетом осветить

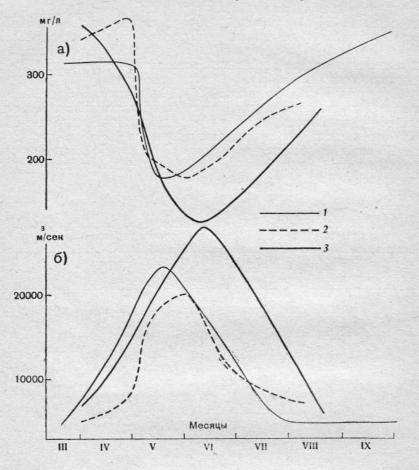


Рис. 5. Изменения общей минерализации волжской воды (a) и расхода (b) за год в период до зарегулирования. 1-1953 г., 2-1954 г., 3-1955 г.

распреснение речной воды талыми водами и переход реки на

грунтовое питание.

Наступление минимума минерализации воды устьевой области Волги в период до зарегулирования стока соответствовало времени наступления максимального расхода воды (рис. 5). Иная картина наблюдалась в условиях зарегулированного стока, когда наступление минимума минерализации воды не соответствует времени наступления максимального расхода воды

(рис. 6). Это явление отмечает также Зенин (1964) и объясняет следующей причиной: «Перед паводком Куйбышевское водохранилище, которое является главным источником питания Нижней Волги (93%), заполнено осенне-зимней водой, имеющей большую минерализацию, чем вода других сезонов. Весенняя маломинерализованная вода достигнет нижнего бьефа тогда, когда

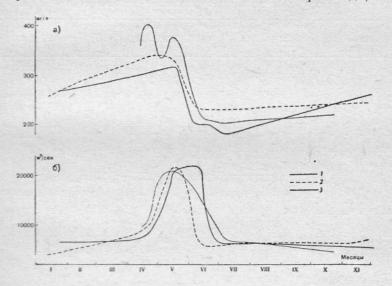


Рис. 6. Изменения общей минерализации волжской воды (а) и расхода (б) за год в период после зарегулирования.
1—1961 г., 2—1962 г., 3—1963 г.

будет вытеснена вся осенне-зимняя вода, имевшаяся в водохранилище. А так как воды в водохранилище в десятки раз больше, то, следовательно, потребуется и больше времени для ее вытеснения из водохранилища, вследствие чего происходит сдвиг минимума минерализации на более позднее время...

Сооружение Волгоградского водохранилища еще больше сдвигает на более поздний период начало уменьшения и ми-

нимум минерализации воды в паводковый период».

В сезонном ходе отмечается резкое уменьшение всех компонентов химического стока и общей минерализации речных вод в летнее время (табл. 6). Причем, период после зарегулирования имеет свою особенность: более повышенное содержание компонентов химического стока весной по сравнению с зимой. В то же время Зенин (1961), анализируя режим главнейших ионов в воде Волги за период до зарегулирования (1954—1955 гг.), отмечал, что максимум минерализации в Волге наблюдался обычно перед вскрытием реки. По-видимому, увеличение ее вес-