в предутренние часы. В апреле резкое увеличение щелочности было обнаружено в 18 часов. Максимальные изменения щелочности в течение суток наблюдались 23 и 24/VI 1960 г. и составили 1 мг-экв/л.

При более детальном рассмотрении связи между почасовыми изменениями щелочности и хлора обнаружено, что эти связи дискретны, для каждого срока наблюдения существует своя связь. Дискретность связи объясняется тем, что в течение суток

Рис. 30. Почасовая связь щелочности с хлором на ст. VII.

щелочность закономерно изменяется в результате фотосинтетической деятельности фитопланктона, в то время как соленость остается постоянной. Подобно тому, как строились графики связи pH и кислорода, были построены графики связи щелочности и хлорд в разные сроки наблюдений (рис. 30). Они показали, что одному и тому же значению хлорности в течение суток отвечают различные значения щелочности.

Глава VI

РЕЖИМ БИОГЕННЫХ ЭЛЕМЕНТОВ

Северный Каспий со стоком Волги получает питательные соли в растворенном и взвешенном состоянии, которые необходимы для развития фитопланктона. К таким веществам прежде всего относятся соединения фосфора, кремния и азота. Круговорот биогенов в море происходит следующим образом: биогенные вещества вносятся реками в море и в процессе фотосинтеза ассимилируются фитопланктоном. Затем в результате разложения

и минерализации отмирающего фитопланктона эти вещества вновь поступают в воду и в мелководных районах моря благодаря интенсивному ветровому перемешиванию распределяются довольно равномерно во всей водной толще.

Существенное влияние на режим биогенов в Северном Каспии оказывает водообмен между западной и восточной его частями, а также водообмен его со Средним Каспием.

Первые наблюдения за биогенными элементами были проведены в 1934 г. Бруевичем в экспедиции ВНИРО. Затем наиболее полные исследования проведены Ивановым (1948) в 19351937 гг.

В дальнейшем режим биогенных элементов освещался в трудах ВНИРО Федосовым и Барсуковой (1959); Винецкая (1962) проанализировала связи режима фосфора с интенсивностью образования органического вещества. В настоящее время АГМО под руководством ГОИНа проводит систематические исследования биогенных элементов; в данной работе в основном использованы материалы наблюдений АГМО за 1961—1963 гг.

Фосфаты

Средние годовые изменения фосфатов в реке и море. Фосфаты, содержащиеся в морской воде в растворенном состоянии в виде иона ортофосфорной кислоты, нередко находятся в минимальных количествах в море и в связи с этим могут ограничивать рост и размножение фитопланктона.

На основании работ многих исследователей можно считать, что на формирование режима биогенных веществ в море большое влияние оказывает биогенный сток Волги.

Сток фосфатов с волжскими водами от года к году изменяется. Для сравнения со средними годовыми данными ${ }^{1}$ о фосфатах за 1961-1963 гг. в пункте Верхне-Лебяжье были использованы данные Барсуковой (1959, 1962), полученные по створу г. Астрахань в периоды до и после зарегулирования стока Волги (табл. 39).

Таблица 39
Средние годовые значения минерального фосфора и его валового сброса

[^0]Снижение фосфатов в воде, особенно после зарегулирования волжского стока, Барсукова (1962) объясняет «потреблением фосфатов фитопланктоном в ранее построенных на р. Волге водохранилищах и уменьшением площадей разлива паводковых вод, а отсюда и уменьшением смыва из почвы фосфатов за весь период весеннего половодья».

Значительное повышение фосфатного фосфора после 1959 г. объяснить довольно трудно.

По данным Цуриковой (1964), до зарегулирования Дона на долю взвешенного фосфора приходилось $63,2 \%$, а на долю растворенного - $36,8 \%$; после зарегулирования стока доля истинно растворенного фосфора повысилась до $54,8 \%$, а взвешенного уменьшилась до $45,2 \%$.

По данным Барсуковой (1962), воды Волги до зарегулирования «содержали равное количество соединений как органически связанного, так и взвешенного фосфора. После зарегулирования у г. Куйбышева произошли изменения в содержании этих форм в волжской воде: органически связанные соединения фосфора, находящиеся в растворенном состоянии, увеличились, а во взвешенном - уменьшились. Такое изменение биогенного стока автор объясняет поступлением биогенных элементов в виде планктических организмов (биосток), которые и изменили форму соединений биогенных элементов, выносимых в море». Резкое увеличение концентраций фосфатов в Волге в мае 1956 г. ($80-90 \mathrm{mкг} /$)) наблюдала Барсукова.

Содержание фосфатов в открытом море в период после зарегулирования Волги значительно снизилось по сравнению с содержанием фосфатов в период до зарегулирования. По данным Винецкой (1950), за 1935-1947 гг. средняя концентрация фосфатов в открытом море составляла около $10-12 \mathrm{mkr} / л$ с максимумом в 1944 г., достигающим 15 мкг/л. Средние за период 1961-1963 гг. величины содержания фосфатов в различных районах Северного Каспия колеблются от 4,5 до 6,6 мкг/л.

Средняя годовая величина ффдержания фосфатов для всего Северного Каспия в 1961 г. была 6,5 мкг/л, а в 1962 и 1963 гг. около $5,4-5,6 \mathrm{mкг} /$. Довольно близкие между собой средние годовые концентрации фосфатов обнаружены отдельно для западной и восточной частей моря (табл. 40).

Для сравнения данных о фосфатах, относящихся к периоду до зарегулирования, с теми данными, которые получены в последующие годы, использованы материалы Иванова. Эти материалы оказались разрозненными.

Съемки от года к году проводились в разные сезоны и были сильно растянуты; в большинстве случаев весенние съемки отсутствовали. Наиболее полный материал собран в июле-августе 1937, 1938, 1940, 1943, 1949-1952 гг. и в октябре-ноябре 1937, 1938, 1940, 1941, 1947, 1948, 1951 гг. На рис. 31 показаны

осредненные по сезонам данные по фосфатам за 1937-1952 и 1961-1963 гг.

Таблица 40
Среднее годовое содержание фосфатов в западной и восточной частях Северного Каспия (мкг/л)

Год	Западная часть	Восточная часть
1961	6,9	6,2
1962	6,1	4,8
1963	4,9	6,4

По сравнению с периодом до зарегулирования концентрация фосфатов в настоящее время снизилась вдвое. Наблюдения, проводившиеся Е. Ф. Шульгиной (1964) на Азовском море, также

Рис. 31. Изменение содержания фосфатов в периоды до и после зарегулирования на западе Северного Каспия (a), на востоке (б).
t-c 1937 по 1953 г., 2 - с 1961 по 1963 г.
показали, что в результате зарегулирования стока Дона после сооружения Цимлянского водохранилища содержание минерального фосфора в море значительно уменьшилось. По мнению Шульгиной, это произошло благодаря уменьшению стока минерального фосфора и потреблению фосфора фитопланктоном, получившим большое развитие в водохранилище.

На сезонные изменения содержания фосфатов в море оказывают влияние несколько факторов: сток фосфатов в море, потребление фосфатов фитопланктоном, интенсивность обмена между грунтом и водной массой.

В речных водах изменчивость фосфатов по сезонам достаточно велика (табл. 41). Максимум в их содержании может приходиться на все сезоны года, кроме осени; минимум обычно отмечается осенью.

Таблица 41
Сезонные концентрации фосфатов (мкг/л) в речной воде

Год	Зима	Весна	Лето	Осень
1956	11	19	13	9
1957	10	7	16	11
1958	12	10	9	6
1962	(35)	21	19	6
1963	(3)	31	-	

Более четко распределяется по сезонам валовой сброс фосфатов Волгой. В весенне-летний период река сбрасывает минерального фосфора в несколько раз больше, чем в осенне-зимний период (табл. 42). Валовой сброс фосфатов связан с продолжительностью и высотой паводка, что неоднократно отмечалось предшествующими исследователями.

Таблица 42
Сезонный валовой сброс фосфатов (т)

Год	Зима	Весна	Лето	Осень
1956	410	1460	800	410
1957	370	690	1630	430
1958	400	900	820	130
1962	$(\boxed{484)}$	1865	1009	303
1963	$(1484$	965	2294	-

В связи с тем, что большая часть материала в годы до зарегулирования относится к июлю-августу, пришлось ограничиться анализом связей между содержанием фосфатов в июле и средним стоком за январь-июль.

До зарегулирования обнаружена связь фосфатов со стоком (рис. 32) на западе. После зарегулирования, по данным за 1961-1963 гг., такую связь проследить не удалось из-за резкого падения содержания фосфатов в море, что, по-видимому, можно объяснить аккумуляцией фосфатов в водохранилище.

Анализируя сезонный ход фосфатов в водах взморья, можно видеть, что концентрация их незначительна и средние величины в море, как правило, не превышают 8 мкг/л (табл. 43).

В апреле наибольшая концентрация фосфатов отмечается в зоне с соленостью $0-2 \%$, наименьшая - в зоне смешанных вод; причем разность между ними не превышает 3 мкг/л. В июне наблюдается некоторое уменьшение фосфатов, в основном это

Рис. 32. Связь средних величин фосфатов с расходом воды в летнее время до и после зарегулирования.

относится к зоне с соленостью $0-2 \%$. Более резкое снижение концентраций фосфатов обнаруживается в июле в зоне с соленостью $10-12 \%$. В октябре концентрации фосфатов по-прежнему довольно низкие. Правда, исключением является район водных масс с соленостью $10-12 \%$, где, например, в октябре 1961 г. по сравнению с июлем содержание фосфатов резко повысилось (до 28 мкг/л). Снижение концентраций фосфатов летом объясняется их потреблением фитопланктоном. Максимальная амплитуда изменений содержания фосфатов в течение года

наблюдается в зоне с соленостью $10-12 \%$（ 15,6 мкг／л），мини－ мальная－в зоне смешанных вод（ $2,7 \mathrm{mkr} / л$ ）．

Таблица 43
Содержание фосфатов（мкг／л）в Северном Каспии в различных водных массах по сезонам．1961－1963 гг．

	Речиые воды			Соленость волной массы，\％о								
				0－2			2－10			10－12		
	Содержание фосфатов											
	$\begin{aligned} & \text { \# } \\ & \text { \# } \\ & \text { í } \end{aligned}$		安		$\frac{\stackrel{y}{2}}{\frac{\omega}{2}}$	堵	$\begin{aligned} & \text { 进 } \\ & \stackrel{0}{0} \end{aligned}$	范	妾	\％	皆	㜢
IV	13	25	6	7，98	9，50	3，92	5，17	17，14	2，06	6，24	14，76	1，41
VI	15	30	2	5，24	9，29		4，44	22，63		6，70	20，40	1，20
VII	18	32	3	4，68	15，8	3，10	7，12	29，75		2，93	6，71	
X	13	－		5，16	5，50	5，04	5，12	16，68	5，95	18，57	34，93	3，63

В зоне смешанных вод в различных районах моря содержа－ ние фосфатов по сезонам различно（табл．44）．Так，на западе максимальное содержание фосфатов наблюдается в апреле и октябре．Летом на западе наблюдается снижение концентраций фосфатов，а в восточной части моря их увеличение．

Таблица 44
Содержание фосфатов（мкг／л）в различных районах в зоне с соленостью $2-10 \%$ по сезонам． 1961 － 1963 гг．

Месяи	Западный район			Восточиый райов			Район водообмена		
	средиее	макс．	мин．	средиее	макс．	мин．	среднее	макс．	мин．
IV	7，65	17，14	2，58	4，04	6，28	1，15	4，27	7，32	2，67
VI	3，19	6，40	0	7，75	15，33	1，80	8，04	16，05	1，23
VII	4，03	13，70	0	12，22	29，75	3，24	4，07	5，70	3，05
X	7，87	32，35	1，39	4，42	15，04	1，86	5，74	9，95	3，65

Максимальная амплитуда колебаний фосфатов в течение года наблюдается на востоке（ 8 мкг／л），минимальная－в районе водообмена между западным и восточным районами（4 мкг／л）．

Более высокое содержание фосфатов в апреле на западе объясняется，по－видимому，тем，что фосфаты，которые выносятся Волгой неполностью，потребляются фитопланктоном в море， так как количество фитопланктона весной оказывается наимень－ шим．Наибольшая биомасса фитопланктона наблюдается летом и этим объясняется понижение концентраций фосфатов в море в это время．Последующее повышение содержания фосфатов

осенью связано с тем, что в это время биомасса фитопланктона ниже, чем летом. П. И. Усачев (1948) приводит в своей работе сезонные колебания средних титров для всего Северного Каспия, которые на 1 м 3 составляют: весной $0,3-2,1$ г, летом $1,1-$ 6,1 г, осенью $0,6-5,8$ г. По данным Усачева оказывается, что вся западная половина Северного Каспия, в особенности ее центральная часть и юго-западный участок, находящиеся под непосредственным влиянием стока биогенных элементов из Волги и опреснения, наиболее богата фитопланктоном.

Вертикальное распределение фосфатов обусловлено ветровым перемешиванием, различной интенсивностью процессов фотосинтеза по глубине, обогащением придонных слоев фосфатами из грунта.

В мелководной части моря, как правило, наблюдается однородное распределение фосфатов по вертикали. В районе свала глубин и в юго-западном районе в ряде случаев была отмечена стратификация фосфатов.

Так, на ст. 25 векового разреза III в 1961 г. было обнаружено значительное повышение концентраций фосфатов ко дну (табл. 45).

Таблича 45
Распределение фосфатов по глубине на ст. 25 в июле 1961 г.

Горизонт, \mathbf{M}	P мкт $/ \boldsymbol{\pi}$	$\mathrm{O}_{2} \%$	Направление течения, град.
0,5	3,8	104	216
12	7,6	96	356
20	16,6	90	326

Увеличение фосфатов и уменьшение содержания кислорода с глубиной указывает на возрастание роли окислительных процессов у дна. В то же время такое распределение кислорода и биогенных веществ в этом районе можно объяснить также наличием противотечений по вертикали. Осенью в юго-западном районе в ряде случаев наблюдалось увеличение концентраций фосфатов с глубиной на ст. 11 и 11а, расположенных в зоне свала глубин (табл. 46).

Повышение концентраций фосфатов с глубиной в зоне свала глубин согласуется с резким падением кислорода и рН у дна. Это объясняется наличием противотечений по вертикали и является свидетельством процессов регенерации, протекающих в придонных слоях рассматриваемого района.

Нередко наблюдается обогащение промежуточных слоев воды на ст. 11 за счет подъема придонных вод, более богатых фосфатами. В таких случаях и в средних горизонтах обнаружи-

вается повышенное содержание фосфатов, близкое к значению его у дна, значительное насыщение воды кислородом и повышение pH .

Таблица 46
Распределение фосфатов по глубине в юго-западном районе моря осенью

$\begin{aligned} & \text { 断 } \\ & \text { 唇 } \end{aligned}$	Дата	2 0 0 0 0 0 0 0	P mkr/ת	$\mathrm{O}_{2} \%$		S \%oo	pH
11	X 1962	0,5 5,0 8,0	1,3 10 14,5	$\begin{array}{r} 104 \\ 103 \\ 52 \end{array}$	-	$\begin{aligned} & 10,12 \\ & 10,26 \\ & 12,08 \end{aligned}$	$\begin{aligned} & 8,39 \\ & 8,39 \\ & 8,17 \end{aligned}$
11	IX 1961	0,5 5,0 9,0	20,2 21 3,2	$\begin{aligned} & 95 \\ & 47 \\ & 58 \end{aligned}$	$\begin{array}{r} 331 \\ 16 \\ 1 \end{array}$	-	-
11a	IX 1961	0,5 6,8	16 25	$\begin{aligned} & 97 \\ & 69 \end{aligned}$	$\begin{aligned} & 26 \\ & 36 \end{aligned}$	-	-

В восточной части моря наблюдается довольно однородное распределение биогенных веществ по вертикали, так как в этом очень мелководном районе под действием ветра происходит полное перемешивание вод. В районе Уральской бороздины изредка наблюдались довольно резкие изменения концентраций фосфатов от поверхности до дна (табл. 47).

Таблица 47
Распределение фосфатов по глубине в центральной части Уральской бороздины в июле 1961 г.

Станция	Горизонт, м	P Mkr/n	$\mathrm{O}_{2} \%$	Направление течения, град.
4	0,5 4,3	$\begin{aligned} & 21 \\ & 66 \end{aligned}$	-	$\begin{array}{r} 77 \\ 327 \end{array}$
5	0,5 5,1	$\begin{aligned} & 29 \\ & 37 \end{aligned}$	$\begin{aligned} & 92 \\ & 88 \end{aligned}$	$\begin{array}{r} 47 \\ 355 \end{array}$
6	0,5 5,0	$\begin{aligned} & 29 \\ & 33 \end{aligned}$	$\begin{array}{r} 100 \\ 90 \end{array}$	$\begin{aligned} & 142 \\ & 290 \end{aligned}$
7	$\begin{aligned} & 0,5 \\ & 6,6 \end{aligned}$	22 65	$\begin{aligned} & 96 \\ & 91 \end{aligned}$	$\begin{aligned} & 173 \\ & 327 \end{aligned}$
8	0,5 6,9	16 25	99 91	$\begin{aligned} & 175 \\ & 301 \end{aligned}$

Обращает на себя внимание тот факт, что на всех станциях наблюдалось значительное повышение фосфатов ко дну и незначительное уменьшение насыщения воды кислородом у дна по сравнению с насыщением кислородом в поверхностном слое. В то же время буквально на всех станциях были обнаружены противотечения. В поверхностном слое течения направлены на восток, в придонном - на запад. По-видимому, такое изменение по вертикали фосфатов обусловлено переносом различных водных масс в разных направлениях на поверхности и у дна.

Как правило, в районе водообмена между западом и востоком не обнаруживаются существенные изменения фосфатов с глубиной. Исключение составляет июнь 1962 г., когда на станциях 17 и 14 были обнаружены значительные повышения фосфатов у дна. Эти повышения составили на ст. 17 на поверхности 5,5 мкг/л $(S=6 \%)$, у дна 37 мкг $/ л(S=10,2 \%)$; на ст. 14 на поверхности - $3,3 \mathrm{mkr} /$ л, у дна $-23 \mathrm{mkr} /$ л (соленость у дна несколько повышена по сравнению с соленостью на поверхности) ; насыщение кислородом было равно на поверхности 100%, у дна 85%. То же самое было обнаружено на ст. 17 в сентябре 1961 г.: содержание фосфатов составило на поверхности 5,6 мкг/л, у дна $20 \mathrm{mkr} / л$ (соленость у дна была выше на 2% по сравнению с соленостью поверхностного слоя).

Кратковременные изменения фосфатов. В различные сезоны года обнаруживаются закономерные кратковременные изменения фосфатов. Как правило, суточный ход фосфатов в поверхностных слоях повторяет суточный ход фосфатов придонных слоев. Обычно накопление фосфатов наблюдается в вечерние часы; в дневное время содержание фосфатов резко снижается за счет их потребления фитопланктоном. Однако, как будет показано ниже, довольно часто максимальные величины фосфора обнаруживаются в ранние предутренние часы, а минимум в 18 часов. Вполне естественно, что при неустойчивых гидрологических условиях, при резкой смене водных масс разной солености и содержания биогенных элементов определенные закономерности в суточном ходе фосфатов нарушаются (рис. 33). Наблюдения в июле 1961 г. на ст. XIV дают основание полагать, что суточный ход биогенных веществ изменяется в данном случае под влиянием фотосинтетических процессов. В районе предустьевого взморья Волги были обнаружены периодические изменения фосфатов. Максимальное содержание фосфатов отмечалось в 18 часов. Следует отметить, что здесь наблюдается повышение содержания фосфатов до $40 \mathrm{mkr} / л$ по сравнению с их количеством в открытой части моря (рис. 34).

В табл. 48 приводятся колебания концентраций фосфатов в различных районах Северного Каспия в 1961 и 1963 гг. В 1963 г. средние максимальные суточные колебания фосфатов во все сезоны оказались незначительными в различных районах

Северного Каспия. Исключение в этом отношении составляет октябрь 1963 г. для ст. V, где средние максимальные суточные колебания фосфатов составили $20 \mathrm{mкг} /$ л. Надо отметить, что в июне и октябре 1963 г. абсолютное содержание фосфатов в южной части района водообмена между западом и востоком было значительно выше, чем во всех остальных районах Северного Каспия. В 1961 г. наибольшие средние максимальные суточные колебания фосфатов наблюдались в июле в районе

Рис. 33. Суточный ход содержания фосфатов и кремния на ст. XIV в июле 1962 г.
Содержание фосфатов: 1 - на поверхности, 2 - у дна; 3 - содержание кремния на поверхности; течение (ось $3-\mathrm{B}$): $4-\mathrm{y}$ дна, 5 - на поверхности; течение (ось С-Ю) : 6 - у дна, 7 - на поверхности.

предустьевого взморья Волги и достигали 27,5 мкг/л. В июне и апреле наблюдаются незначительные суточные колебания концентраций фосфатов в области водообмена между западом и востоком. Более существенные колебания концентраций фосфатов обнаруживаются в июне на ст. ІІб и в районе свала глубин. Это объясняется усилением влияния волжского стока на эти районы моря в связи с развитием паводка. В сентябре наблюдалось повсеместное уменьшение концентраций и суточных колебаний фосфатов, за исключением ст. V, где были обнаружены более существенные их колебания.

Количественной связи между фосфатами и кислородом обнаружить не удалось. Это, по-видимому, объясняется тем, что содержание кислорода оказывается одинаковым для разных типов водных масс моря и смена водных масс не оказывает, как правило, существенного влияния на содержание кислорода. В то же время, как было показано выше, содержание фосфатов

Рис. 34. Суточный ход содержания фосфатов и кремния на ст. XIV в июле 1961 г.
Содержанне фосфатов: 1 - на поверхности, 2 - у дна; содержание кремния: 3 - на поверхности, $4-\mathrm{y}$ дна; течение (ось 3-B): 5 - на поверхности, 6-у дна; течение (ось Ю-С): 7-на поверхности, 8 -у дна.

в данном районе зависит не только от фотосинтетической деятельности фитопланктона, но в значительной степени и от смены водных масс.

Кремний

Содержание кремния в Волге колеблется от года к году в широких пределах. Результаты расчета кремния в речной воде (табл. 49), полученные АГМО и КаспНИРО, мало сопоставимы, так как методики расчета средних величин были различными.

При детальном рассмотрении хода средних годовых величин кремния в реке обращает на себя внимание резкое снижение их начиная с 1959 г. (примерно в 2 раза).

Как правило, в сезонном ходе концентраций кремния в Волге повышенное содержание его было отмечено весной, а минимальное - летом (табл. 50).

Суточные амплитуды изменения фосфатов (мкг/л) в Северном
Каспии в 1961 и 1963 гг.

Станция	Дата	Минимум	Максимум	Колебания в течение суток	Средиие колебания

1961 г.

III6	$\begin{array}{ll} 13 & \text { IV } \\ 14 & \text { IV } \\ 15 & \text { IV } \\ 16 & \text { IV } \end{array}$	$\begin{aligned} & \frac{2}{1} \\ & \overline{4,5} \end{aligned}$	$\begin{gathered} 5 \\ 5 \\ 10,5 \end{gathered}$	$\begin{aligned} & 3 \\ & 4 \\ & \hline 6 \end{aligned}$	4
XIV	$\begin{aligned} & 19 \text { IV } \\ & 20 \text { IV } \\ & 21 \text { IV } \\ & 22 \text { IV } \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 3,5 \\ & 3,5 \end{aligned}$	$\begin{gathered} 4,5 \\ 12 \\ 7,5 \\ 13 \end{gathered}$	$\begin{aligned} & 1,5 \\ & 8 \\ & 4 \\ & 9,5 \end{aligned}$	5,7
1II6	$1 . \mathrm{VI}$ 2 3 3 4 4	$\begin{aligned} & 6 \\ & 8 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 23 \\ & 20 \\ & 23 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 12 \\ & 19 \\ & 15 \end{aligned}$	16
V	6 VI 7 8 8 9 9	$\begin{aligned} & 3 \\ & 2,5 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 2 \\ & 1,5 \\ & 1,0 \end{aligned}$	1,5
XIV	18 VII 19 VII 20 VII	$\begin{aligned} & 4 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 26 \\ 40 \\ 32 \\ 16 \\ 6 \end{array}$	$\begin{array}{r} 22 \\ 38 \\ 30 \\ 13 \\ 2 \end{array}$	21
III6	$\begin{aligned} & 12 \text { VII } \\ & 13 \text { VII } \\ & 14 \text { VII } \\ & 15 \text { VII } \end{aligned}$	$\begin{array}{r} 4 \\ 6 \\ 8 \\ 10 \end{array}$	$\begin{aligned} & 10 \\ & 22 \\ & 30 \\ & 48 \end{aligned}$	$\begin{array}{r} 6 \\ 16 \\ 22 \\ 38 \end{array}$	27,5
XIV	$\begin{array}{ll}20 & \text { IX } \\ 21 & \text { IX } \\ 22 \\ 23 & \text { IX } \\ 2\end{array}$	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 11 \\ 2 \\ 1,5 \end{gathered}$	$\begin{aligned} & 9 \\ & 1 \\ & 1,5 \end{aligned}$	3,8
1116	$\left.\begin{array}{ll} 26 & \text { IX } \\ 27 & \text { IX } \\ 28 & \text { IX } \\ 29 & \text { IX } \end{array}\right\}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 2 \\ & \text { и ми } \end{aligned}$	$\begin{gathered} 1,5 \\ 1 \\ \text { бнару } \end{gathered}$	
VII	$\begin{array}{ll}13 & \mathrm{IV} \\ 14 & \mathrm{IV} \\ 15 & \mathrm{IV} \\ 16 & \mathrm{IV}\end{array}$	$\begin{aligned} & 2,5 \\ & 2 \\ & 2 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 3 \\ & 3 \\ & 3,5 \end{aligned}$	3

Станция	Дата	Минимум	Максимум	Колебания в течение	
V	19 IV 20 IV 21 IV 22 IV	$\begin{aligned} & 4 \\ & 2,5 \\ & 4,5 \\ & 5 \end{aligned}$	$\begin{aligned} & 7,5 \\ & 6,5 \\ & 11 \\ & 23 \end{aligned}$	$\begin{gathered} 3,5 \\ 4 \\ 6,5 \\ 18 \end{gathered}$	8
XIV	1 VI 2 3 VI 4 4 VI	$\begin{aligned} & 2,5 \\ & 2,5 \\ & 2,5 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3,5 \\ & 3,5 \end{aligned}$	$\begin{aligned} & 0,5 \\ & 0,5 \\ & 1,0 \\ & 0,5 \end{aligned}$	0,6
VII	60 VI 7 8 8 VI 9 9 VI	$\begin{aligned} & 2 \\ & 2 \\ & 5,5 \\ & 3 \end{aligned}$	$\begin{gathered} 22 \\ 6 \\ 8 \\ 17,5 \end{gathered}$	$\begin{gathered} 20 \\ 4 \\ 2,5 \\ 14,5 \end{gathered}$	10
V	18 VII 19 20 VII 21 22 VII 22	$\begin{aligned} & 2,5 \\ & 3 \\ & 3,5 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 5,5 \\ & 5 \\ & 5 \\ & 9,5 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \\ & 1,5 \\ & 6,5 \\ & 2 \end{aligned}$	3
VII	12 VII 13 VII 14 VII	$\begin{aligned} & 3 \\ & 3 \\ & 1 \\ & 3,5 \end{aligned}$	$\begin{aligned} & 5 \\ & \stackrel{5}{5}, 5 \\ & 5 \\ & 6,5 \end{aligned}$	2 2,5 2 3	2,8
V	20 IX 21 IX 22 IX 23 IX	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3,5 \end{aligned}$	19 25 6 6	16 22 3 2,5	10,9
VII	26 IX 27 IX 28 IX 29 IX	2,5 2,5 1,5 1,5	$\begin{aligned} & 6 \\ & 4,5 \\ & 3,0 \\ & 4,5 \end{aligned}$	3,5 2,0 1,5 3	2,5
VII	23 IV 24 IV 25 IV 26 IV	4 4 4 4	$\begin{array}{r} 12 \\ 8 \\ 8 \\ 12 \end{array}$	8 4 4 8	6
V	23 IV 24 IV 25 IV 26 IV	$\begin{aligned} & 1,5 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	4 5 8	$\begin{aligned} & 2,5 \\ & 3 \\ & 6 \\ & \hline \end{aligned}$	3,8
VII	$\left.\begin{array}{l}15 \mathrm{VI} \\ 16 \mathrm{VI} \\ 17 \mathrm{VI} \\ 18 \mathrm{VI}\end{array}\right\}$	1,5	и мин.	$\begin{gathered} 2,5 \\ \text { бкнаружен } \end{gathered}$	

Станция	Дата	Минимум	Максимум	Колебания в течение суток	Средние колебания
V	15 VI	15	17	2	5
	16 VI	16	19	2	
	17 VI	16	24	8	
	18 VI	17	24	8	
VII	21 VII	2	3	1	1,7
	22 VII	2,5	3	0,5	
	23 VII	2	3,5	1,5	
	24 VII 25 VII	Макс. и мин. не обнаружены			
V	21 VII	0	2	2	
	22 VII 23 VII $\}$	Макс. и мин. не обнаружены			
	24 VII $\}$				
	25 X	22	31	9	20
	26 X	22	36	14	
	27 X	17	36	19	
	28 X	13	51	38	
VII	25 X	5	12	7	
	26 X	3	12	9	
	$\left.\begin{array}{l}27 \mathrm{X} \\ 28 \mathrm{X}\end{array}\right\}$	Макс. и мин, не обнаружены			

Таблица 49
Средние годовые величины кремния (мкг/л) в Волге, по различным

5	\sum_{4}^{0}		$\begin{aligned} & \text { 펼 } \\ & \text { © } \\ & \text { < } \\ & \text { < } \end{aligned}$	5	\sum_{4}^{0}	¢	\# © ल 4 4
1938	-	3160	-	1957	4400	2603	3300
1939	-	2720	-	1958	4400	1840	2800
1940	-	3900	-	1959	2400	-	2300
1952	4400	3633	-	1960	2700	-	2100
1953	5300	3500	-	1961	3100	-	1800
1954	3900	3046	-	1962	2600	-	
1955	3600	3225	-	1963	3500	-	-
1956	5400	2989	-				

Сезонные изменения кремния в Волге

Год	Зима	Лето	Осень	Весна	Год	Зима	Лето	Осень	Весна
1954	4483	1342	1881	3911	1958	1628	1804	1240	3111
1955	3831	2079	2155	5037	1962	2200	2600	2000	3130
1956	3115	2443	2454	3946	1963	2200	2875	-	5300
1957	3400	1983	1693	3336					

В период до зарегулирования на западе Северного Каспия наблюдалось значительно большее содержание кремния по сравнению с его содержанием в период после зарегулирования (рис. 35).

Значительное увеличение кремния, напротив, отмечается на востоке моря по сравнению с содержанием его в период до зарегулирования, что объясняется, по-видимому, аккумуляцией

Рис. 35. Изменение содержания кремния в периоды до и после зарегулирования на западе Северного Каспия (a), на востоке (б).
1 - с 1937 по 1953 г., 2-с 1961 по 1963 г. шее количество крем-
ния
На отдельных разрезах были обнаружены связи кремния с хлором, правда, они оказались дискретными для разных сезонов, в связи с тем, что величина кремния в море зависит не только от речного стока, но также в значительной мере определяется и кратковременными изменениями в процессе фотосинтеза. Так, в мае 1961 г. диапазон изменения хлора на вековом разрезе III от реки к морю колебался от 0 до 5%, а содержание кремния уменьшилось до 600 мкг/л. В мае 1962 г. диапазон изменения солености на этом же разрезе был несколько меньше (от 0 до 4%), но содержание кремния (рис. 36) изменялось в очень широких пределах ($150-1250$ мкг/л).

В апреле (табл. 51) наибольшие величины кремния в Северном Каспии обнаруживаются в зоне с соленостью $0-2 \%$ и в зоне смешанных вод. В районе, подверженном влиянию среднекаспийских вод, содержание кремния минимальное.

В июне с увеличением волжского стока кремний поступает в море в большом количестве. Однако наибольшая концентрация кремния отмечается в это время в зоне с соленостью 0$2 \%$. В июне, в период наиболее интенсивного влияния волжских

Рис. 36. Связь хлора с содержанием кремния на вековом разрезе III. I-май 1961 г., 2 - май 1962 г,, 3 - июль 1963 г.

вод на Северный Каспий, концентрации кремния возрастают довольно резко (примерно в два раза) в зоне с соленостью 0$2 \%$ и в зоне смешанных вод. Наиболее низкими концентрации

Таблица 51
Содержание $\mathrm{Si} \mathrm{mкг/л} \mathrm{в} \mathrm{водах} \mathrm{Северного} \mathrm{Каспия} \mathrm{с} \mathrm{различной}$ соленостью. 1961-1963 гг.

Месяи	Речные воды			Соленость водной массы, \% \%								
				0-2			2-10			10-12		
	Содержание Si											
	среднее	макс.	мин.	среднее	макс.	мин.	cpesнее	макс.	мин.	среднее	макс.	мин.
IV	3300	-	-	760	1845	0	854	2320	0	141	851	0
VI	3200	3200	2800	976	2240	270	691	1740	0	287	2208	0
VII	2300	,	,	1538	2219	121	1276	3106	156	350	668	178
X	4100	-	-	561	936	244	1190	2380	225	400	786	173

кремния по-прежнему остаются в зоне с соленостью $10-12 \%$. С уменьшением речного стока резкое уменьшение кремния наблюдается в октябре в районе непосредственного влияния волжских вод и в районе с соленостью $10-12 \%$. В то же время в зоне смешанных вод отмечается по-прежнему высокое содержание кремния за счет его накопления в районе Уральской бороздины.

В распределении кремния по сезонам в зоне смешанных вод, на западе и востоке, а также в районе водообмена между ними отмечаются существенные различия (табл. 52). Так, на западе в различные сезоны года были отмечены более низкие концентрации кремния по сравнению с аналогичными концентрациями на востоке. Обращает на себя внимание тот факт, что в апреле на западе содержание кремния падает до аналитического нуля.

Таблица 52
Содержание Si мкг/л в водах с соленостью $2-10 \%$. 1961-1963 гг.

Месяц	Западный район			Восточный район			Район водообмена		
	среднее	макс.	мин.	среднее	макс.	мин.	среднее	макс.	мин.
IV	224	667	0	1235	2320	0	683	1264	319
VI	412	1230	0	942	1740	271	617	832	385
VII	672	1394	156	1452	3218	201	1207	2420	204
X	440	1450	225	1763	2340	321	979	1990	291

В то же время в восточной части моря концентрации кремния очень велики. По-видимому, это связано с тем, что на востоке в апреле диатомовые водоросли развиваются в меньшей мере, чем на западе. По данным наблюдений в 1955 г. М. С. Кун (1959), на-западе отмечается большое развитие ризосолений именно в апреле. Обнаруженное нами низкое содержание кремния весной подтверждает вывод Иванова (1948) о том, что в Северном Каспии кремнекислота может лимитировать развитие фитопланктона, что объясняется незначительным волжским стоком и активным потреблением кремния диатомовыми. Повышение кремния в западной части моря наблюдается летом, а понижение осенью. В восточной части моря и в районе водообмена в зоне смешанных вод повышение концентраций кремния было обнаружено в июле и октябре. Наименьшие концентрации кремния отмечены в этих районах в июне в отличие от концентраций кремния в западном районе.

Вертикальное распределение кремния определяется следующими условиями: интенсивностью перемешивания, связанного с ветровым режимом, изменением интенсивности процессов фотосинтеза с глубиной, рельефом дна, обогащением придонных слоев кремнием из грунта и т. п.

В мелководных районах Северного Каспия, как правило, наблюдается однородное распределение кремния по вертикали. На юго-западном участке моря и в районе свала глубин обнаруживается отчетливая вертикальная стратификация кремния. Так, в июле и октябре на глубоководной станции 25 векового разреза III отмечены довольно резкие колебания кремния по вертикали (табл. 53).

Таблица 53

Распределение кремния (мкт/л) по вертикали на ст. 25 в 1962 г.

Горизонт, м	Июль	Октябрь
Поверхность	276	179
5	282	266
10	475	236
13	595	230
18	600	-
20	732	428

В районе свала глубин в июле и октябре обнаруживается увеличение содержания кремния с глубиной. Это явление можно объяснить высоким содержанием кремния в донных отложениях. Особенно высокое содержание кремния в придонных слоях было обнаружено в юго-западном районе моря в июле 1962 г. (на ст. 14 в поверхностном слое содержание кремния составило 344 мкг/л, на глубине $7 \mathrm{~m}-720$ мкг/л, на глубине 10 m 1009 мкг/л). Летом развитие диатомей замедляется, происходит регенерация их и накопление кремния в придонном слое воды. На востоке обнаружено резкое увеличение кремния в придонном слое центральной части Уральской бороздины. Так, на ст. 49 разреза Х в июле 1961 г. в поверхностном слое содержание кремния составляло 1967 мкг/л, а в придонном - 2877 мкг/л; в октябре 1962 г. на ст. 50 в поверхностном слое его наблюдалось $1740 \mathrm{mкг} /$ л, а в придонном $2320 \mathrm{mkr} /$; ; в апреле 1963 г. на ет. 7 на поверхности было отмечено 1683 мкг/л, а у дна 2320 мкг/л.

Суточный ход содержания кремния не всегда четко выражен (см. рис. 33). В том случае, когда сохраняется однородная соленость воды, суточный ход в содержании кремния выражается наиболее отчетливо (см. рис. 34).

Наглядным примером могут служить суточные колебания кремния и фосфатов на северных станциях Северного Каспия. На станциях ІІб и XIV максимумы фосфатов и силикатов совпадают. Максимальные колебания концентраций кремния составляют 1700 мкг/л на ст. XIV и 2000 мкг/л на ст. ІІб; минимальные колебания составляют 450 и $1200 \mathrm{mкг} /$ л соответственно. На ст. V резкое увеличение кремния с 350 до 1300 мкг/л можно объяснить сменой направления течения; течение, направленное с северо-востока на юго-запад, вызывает приток вод с востока. Вследствие сложной ветровой обстановки суточный ход биогенных элементов на станциях V и VII выявить не удалось.

В табл. 54 приведены суточные колебания кремния в Cesepном Каспии.

Нитраты

В ряде случаев в Северном Каспии обнаруживаются лишь следы нитратов в предустьевом пространстве и открытой части моря. К. И. Иванов (1948) и другие исследователи объясняют отсутствие нитратов потреблением их фитопланктоном и слабым процессом нитрификации в мелководной части моря. В апреле 1962 г. содержание нитратов в Северном Каспии колебалось от 0 до $80 \mathrm{mкг} / л$ на поверхности и у дна. В восточной его части нитраты не обнаружены, в то время как у западного побережья содержание нитратов достигало $70-80 \mathrm{mкг} /$ л. Это, по-видимому, связано с тем, что сток реки в этот период незначителен и волжские воды прижимаются к западному берегу, не оказывая существенного влияния на остальную часть Северного Каспия. Поэтому у западного побережья обнаруживаются повышенные концентрации нитратов, а в открытой части моря их содержание колеблется от 0 до 5 мкг/л. Сезонные изменения в содержании нитратов, по наблюдениям Иванова (табл. 55), значительны.

Таблица 55
Содержание нитратов (мкг/л) в Северном Каспии, по данным Иванова

Годы	Месяцы	Западный район	Восточный район
1937, 1938	IV-V	5,3	1,5
1938-1941	V-VI	4,6	13,8
1937,1940	VII-VIII	1,5	1,4
1937-1940	X-XI	9,6	4,6

Нитриты

Нитриты являются промежуточным продуктом при окислении аммиака до нитратов и потребляются фитопланктоном. Этим, по-видимому, объясняется низкое содержание нитритного азота в Северном Каспии. Так, в апреле 1961 г. нитритный азот в западной части его отсутствовал, а в восточной части содержание его не превышало $2 \mathrm{mкг} / л$, в апреле 1962 г. содержание нитритов во всем Северном Каспии не превышало $0,5 \mathrm{mкг} / л$. Исключением являются воды западного побережья Северного Каспия, где среднее содержание нитритов составляло 4 мкг/л и где одновременно обнаружено повышенное содержание нитратов, о чем указывалось выше. В придонных слоях распределение нитритов было таким же, как и в поверхностных. В июне под влиянием волжского стока, богатого азотсодержащими органическими соединениями и продуктами их минерализации, западный район

обогащается нитритами. Так, в предустьевом пространстве Волги и у побережья западного района в июне 1961 г. наблюдались концентрации нитритов около 2 мкг/л. По мере продвижения к югу они снижаются. На востоке в то же самое время нитриты отсутствуют. Это связано с тем, что влияние волжского стока в июне неполностью сказывается на восточном районе. В мае-июне 1962 г. нитриты отсутствовали, за исключением двух северных станций векового разреза III, где их содержание достигало $8 \mathrm{mкг} /$ л. Повышенные концентрации нитритов в ряде случаев наблюдались и на станциях векового разреза I, что, видимо, обусловлено влиянием уральского стока.

В июле концентрации нитритов в море оказывались по-прежнему довольно низкими (на востоке не превышали 0,7 мкг/л, а на западе они в ряде случаев отсутствовали). В среднем горизонте содержание нитритов невелико, но в придонном слое в июле 1961 г. у западного берега оно было значительным. Осенью содержание нитритов также незначительно. Во всех случаях, несмотря на повышенные концентрации нитритов у западного побережья, как правило, на юго-западе Северного Каспия отмечается минимальное или нулевое их содержание. По-видимому, это связано с обильным развитием фитопланктона и потреблением нитритов в данном районе. В табл. 56 приведены средние и экстремальные значения нитритов в основных районах Северного Каспия в различные сезоны года.

Концентрации нитритов, по данным Иванова, также не были высокими (табл. 57).

Таблица 57
Средние концентрации нитритов (мкг/л), по данным Иванова

Годы	Месяцы	Западный район	Восточный район
	V-V	0,8	1,4
$1938,1938,1947$	V-VI	7,0	5,0
$1947,1950,1951$	VI-VII	0,9	0,4
$1937,1940,1947$	VII-VIII	0,5	1,6
$1941,1943,1949$	VIII-IX	3,0	0,5
$1937,1938,1940,1941$,	X-XI	1,1	1,3

Таким образом, видно, что концентрации нитритов и нитратов, которые наблюдались в период после зарегулирования, не изменились. Максимальные концентрации нитратов (77 мкг/л) и нитритов (16,3 мкг/л) были обнаружены Ивановым в мае июне 1940 г.

Окисляемость

Для косвенной оценки содержания органического вещества в море используются сведения об окисляемости. Основными факторами, обусловливающими формирование режима органического вещества в Северном Каспии, являются сток Волги и Урала, несущих большое количество органического вещества, жизнедеятельность организмов, населяющих водную среду, продукты распада отмершего планктона.

Органическое вещество определял по методу окисления перманганатом в щелочной среде в 1935 и 1936 гг. Иванов (1948) в предустьевом пространстве Волги. Характерной особенностью являлось уменьшение окисляемости по мере удаления от берегов в глубь моря. В настоящее время окисляемость определяют перманганатным методом в нейтральной среде. Это затрудняет их сравнение с данными, полученными Ивановым. В некоторой степени эту задачу облегчает работа Б. А. Скопинцева (1938), в которой приводятся результаты исследования окисляемости, полученные обоими методами. Как правило, результаты окисляе мости, полученные в щелочной среде, превышают результаты, полученные в нейтральной среде, в $2-2,5$ раза. По данным В. Г. Дацко (1939), относящимся к глубоководной части Среднего Каспия, и Б. А. Скопинцева (1938), полученным для Южного Каспия, средняя щелочная окисляемость на поверхности составляет 2,8 мг $\mathrm{O}_{2} /$ л, во всей толще - около $2,4 \mathrm{mг} \mathrm{O}_{2} /$ л. На поверхности и у берегов окисляемость оказывается выше. По данным Иванова (1948), щелочная окисляемость на поверхности в районе о. Чечень-п-ов Мангышлак составляет в июле-августе 1936 г. 5,79-4,41 мг О O $_{2} /$ л и в сентябре - октябре 1936 г. - 6,784,55 мг $\mathrm{O}_{2} /$ л. К северу и северо-западу от этого района окисляемость возрастала и достигала в 1936 г. на поверхности следующих средних величин (мг $\mathrm{O}_{2} /$ л) : в апреле - 7,02 , в мае - 5,86 , в июне - 8,09 , в августе - 6,91 , в октябре-ноябре - 6,42 .

В 1963 г. окисляемость на Северном Каспии определялась перманганатным методом в нейтральной среде, а в реке, в пробах пункта Верхне-Лебяжьего, в кислой среде. За 1952-1963 гг. средние годовые значения окисляемости в речной воде изменились от 5,8 до 10,6 мг $\mathrm{O}_{2} /$ л. В течение года также наблюдались довольно существенные колебания величин окисляемости, но определенной закономерности в сезонном ходе ее установить не удалось (табл. 58).

В различных водных массах Северного Каспия в разные сезоны отмечается одна и та же закономерность: по мере увеличения хлорности величины окисляемости уменьшаются. Наибольшие ее величины в апреле были обнаружены в зоне с соленостью $0-2 \%$ и в зоне смешанных вод. В июне и июле она понижается в указанных выше водных массах. В то же время в зоне с соле-

Таблица 58
Окисляемость (мг $\mathrm{O}_{2} / \boldsymbol{\pi}$) в пункте Верхне-Лебяжьем

Год	1	II	III	IV	v	vi	VII	VIII	IX	x	XI	XII	Макс. кол. в течени гола
1960	-	-	-	8,5	7,4	5,6	7,3	9,1	-			-	3,5
1961	-	-	-	6,3	4,9	4,3	6,0		-	7,0	-	-	2,7
1962	6,4	-	-	5,7	5,5	6,3	5,5	-	-	-	6,5	-	1,0
1963	6,5	-	-	8,4	8,2	6,5	6,0	-	-	-		7,1	2,4

ностью $10-12 \%$ она увеличивается благодаря мощному влиянию речного стока в этот период (табл. 59).

Таблица 59
Изменения окисляемости (мг $\mathrm{O}_{2} /$ л) в различных водных массах Северного Каспия

Месяц	Соленость водной массы, \%								
	0-2			2-10			10-12		
	Изменение окисляемости								
	среднее	макс.	мин.	среднее	макс.	мин.	среднее	макс.	мин.
IV	6,13	7	-	3,01	3,19	2,81	2,37	4,46	1,55
VI	5,28	5,77	4,87			-	2,46	2,83	2,07
VII	,	5,77	,	2,52	4,22	1,78	2,59	2,61	2,57
X	-	-	-	2,78	3,34	2,10	1,74	2,03	1,39

В октябре наблюдается уменьшение окисляемости в различных районах моря.

Ряд авторов, исследовавших окисляемость в различных водоемах (Скопинцев, Шульгина и др.), указывают на более высокие величины ее в поверхностном слое по сравнению с нижележащими слоями воды. В Северном Каспии, в западной его части, мы часто сталкивались с обратным распределением окисляемости, т. е. с увеличением ее с глубиной. Так, увеличение ее с глубиной обнаружено в водах Северного Каспия в июле на станциях разреза III; по-видимому, это связано с интенсивным осаждением органических веществ в придонном слое. На ст. 6 окисляемость была равна в поверхностном слое 1,90 , в придонном 4,84 мг $\mathrm{O}_{2} /$ л; на ст. Іа в поверхностном слое 2,61 , в придонном 5,05 мг $\mathrm{O}_{2} /$ л. Интересно в связи с этим распределение окисляемости по вертикали на ст. 24 векового разреза III. Здесь в различные сезоны года повышенные значения окисляемости отмечались в промежуточном слое на глубине 10 m (общая глубина ст. 24 равна 13 м). По-видимому, это явление объясняется некоторым увеличением условной плотности в этом слое (табл. 60).

Таблица 60
Окисляемость (мг $\mathrm{O}_{2} / \boldsymbol{\pi}$) на различных глубинах на ст. 24 векового разреза III. 1963 г.

	Aпре.ss		Июнь		Июль		Октябрь	
	${ }^{\circ}$	mr $\mathrm{O}_{2} / \mathrm{A}$	${ }^{\circ} t$	$\mathrm{mr}_{2} / \mathrm{A}$	${ }_{t}$	mr $\mathrm{O}_{2} / \mathrm{n}$	${ }_{t}$	$\mathrm{mr}_{2} / \mathrm{n}$
0,5	11,01	1,55	-8,64	2,51	5,97	2,57	9,12	1,39
	10,91	1,93	8,93	2,22	6,15	1,99	9,19	1,50
10	11,05	2,34		3,04	7,63	3,06	9,30	1,66
13		1,33	8,50	2,51		2,83	9,47	1,41

В восточной части Северного Каспия наблюдается, как правило, довольно однородное распределение окисляемости по вертикали с незначительным увеличением окисляемости в поверх-

Рис. 37. Связь хлора со значениями окисляемости в разные сезоны в 1963 г. на дополнительном разрезе III (a), вековом разрезе II (б).

$$
I \text { - апрель, } 2 \text { - нюнь, } 3 \text { - нюль, } 4 \text {-октябрь. }
$$

ностном слое воды. Исключение составляет ст. 6, где на поверхности окисляемость равна 3,03 , а у дна 1,66 мг $\mathrm{O}_{2} /$ л. На вековом разрезе II, в районе водообмена между западным и восточным районами, наблюдается уменьшение окисляемости с глубиной, но резких изменений величин окисляемости по вертикали в 1963 г. не было обнаружено.

Окисляемость оказывается хорошим показателем распространения речных струй в море. Речные воды характеризуются высокими величинами окисляемости по сравнению с водами, пришедшими из Среднего Каспия. На вековых разрезах I, II, III и дополнительном разрезе III во все сезоны наблюдалось уменьшение окисляемости по мере продвижения от Волги к морю. На рис. 37 видно, что наибольшим значениям хлорности на разрезе II и дополнительном разрезе III соответствуют наименьшие величины окисляемости.

Заключение

Северная часть Каспийского моря относится к типу солоноватоводных бассейнов. Гидролого-гидрохимический режим Ce верного Каспия подвержен влиянию различных факторов: с одной стороны, это мощный приток пресных вод, вносимых Волгой и Уралом, с другой - это приток вод из Среднего Каспия. Существенное влияние на гидрохимический режим моря оказывают также осадки и испарение.

Вследствие мелководности Северного Каспия гидролого-гидрохимический режим его крайне неустойчив и резко изменяется под влиянием ветра, температуры и т. п.

Хороший прогрев воды по глубине в теплое время года и значительное перемешивание всей ее толщи под влиянием ветра способствуют высокой продуктивности этой части моря и обеспечивают быструю оборачиваемость биогенных элементов в море.

Соленость. Начиная с 1931 г. изменения солености характеризуются несколькими основными периодами, каждому из которых соответствует определенное положение уровня моря и величина волжского стока. За период 1957-1962 гг. соленость Северного Қаспия повысилась по сравнению с соленостью последнего периода на 1%. Средняя многолетняя величина солености для западного района за этот же отрезок времени оказывается равной величине средней многолетней солености ($9,1 \%$), определенной Ивановым для периода 1936-1952 гг. Средняя многолетняя величина солености в восточном районе примерно на 1% стала ниже солености, определенной Ивановым. Это объясняется отчленением заливов Кайдак и Комсомолец, ранее оказывавших осолоняющее влияние на эту часть моря.

На колебания средних годовых величин солености во всем Северном Каспии и отдельно в каждой его части существенное влияние оказывает волжский сток. Это позволило обнаружить удовлетворительные количественные связи между средней соленостью и стоком Волги для западного и восточного районов, а также для Северного Каспия в целом.

Исследование колебаний средних годовых величин солености под влиянием режима ветров показало, что на их изменение ветер не оказывает существенного влияния и в основном вызывает только перераспределение солености по различным районам моря.

На сезонные изменения солености в Северном Каспии влияют в основном речной сток и ветровой режим. В различные сезоны года в Северном Каспии, особенно в его западной части, выделяется три типа водных масс: с соленостью $0-2 \%$, находящиеся под непосредственным влиянием речного стока; с соленостью $10-12 \%$, формирующиеся под влиянием вод Среднего Каспия, и,

наконец, зоны смешения вод с соленостью $2-10 \%$. В зависимости от колебания стока и изменения режима ветра положение границы водных масс (их объемы и площади) может сильно измениться: от колебаний стока в течение года объемы водных масс с соленостью $0-2 \%$ изменяются от 5 до 40 км 3, с соленостью $2-10 \%$ - от 50 до 150 км 3, с соленостью $10-12 \%$ - от 75 до $200 \mathrm{~km}^{3}$. Межсезонные колебания средних величин солености за 1956-1962 гг. составили для западной части $1,5 \%$, для восточной $0,5 \%$.

Между средними годовыми и средними месячными (летними) значениями солености существует тесная количественная связь. Обусловлено это тем, что именно летом под влиянием паводочных вод наиболее сильно изменяется режим солености, и эти изменения самым существенным образом отражаются на величине средней годовой солености. Весной и осенью режим солености значительно более ровный, а ветровая обстановка, которая могла бы повлиять на распределение и абсолютную величину солености, примерно одинакова.

По величинам кратковременной изменчивости хлорности в Северном Каспии отчетливо выделяется несколько районов: район мелководного предустьевого пространства Волги с максимальным колебанием хлора в пределах нескольких десятых долей промилле; район водообмена между западным и восточным районами моря с максимальными колебаниями хлора $1,8 \%$; район свала глубин с максимальными колебаниями хлора $2,3 \%$. В каждом из указанных районов моря на кратковременную изменчивость хлорности оказывают влияние ветры и течения, обусловливающие перенос водных масс разной солености из одного района моря в другой.

В мелководных частях моря наблюдается однородное распределение солености по вертикали. Только район свала глубин и район водообмена между западным и восточным районами характеризуются весьма резкой вертикальной изменчивостью, максимальные значения которой составляют около 5%. В юго-западном районе (Астраханский плавмаяк) наибольшие вертикальные градиенты солености достигают 10%. Резкая изменчивость солености по вертикали наиболее характерна для мая июля (для периода максимума волжского стока в море).

Растворенный кислород и рН. Благодаря своей мелководности Северный Каспий хорошо аэрируется. В результате зарегулирования стока наблюдается некоторое снижение относительного содержания кислорода и существенное понижение значений pH . Величины межгодовых колебаний кислорода и pH также снизились в сравнении с периодом до зарегулирования. В настоящее время в сезонном ходе pH и абсолютного содержания кислорода не наблюдается существенных изменений по сравнению с ходом рН в период до зарегулирования: максимальная

величина рН отмечена в летнее время, минимальная - весной; максимальное абсолютное содержание кислорода наблюдается весной, минимальное - летом.

Суточные колебания pH и кислорода изменяются по сезонам и характеризуют интенсивность фотосинтетических процессов в море. Наибольшие суточные колебания кислорода и рН отмечены в июле, в период максимального влияния волжского стока, в районе свала глубин. После зарегулирования амплитуда суточных колебаний кислорода значительно упала в глубоководной части моря и более равномерно распределились колебания кислорода в течение года во всех районах моря. В суточном ходе элементов газового режима обнаружены удовлетворительные связи между рН и кислородом. Существенное влияние на суточный ход кислорода в поверхностном слое воды оказывают физические факторы: температура, соленость, давление. Вследствие повышения давления воздуха кислород из атмосферы поступает в поверхностный слой воды, а с понижением давления кислород из приводного слоя переходит в атмосферу.

Относительное и абсолютное содержание кислорода на поверхности в различных районах моря весьма однородно. Придонные слои юго-западного участка моря и района свала глубин обнаруживают резкое снижение абсолютного и относительного содержания кислорода и рН. Это объясняется особенностями рельефа дна, резкой стратификацией пресных и соленых вод, наличием слабых течений в придонных слоях.

Щелочность. В Северном Каспии по характеристике щелочности выделяются три типа водных масс: воды материкового стока, смешанные и пришедшие из Среднего Каспия. С увеличением хлорности щелочность увеличивается, но для различных лет и сезонов получены дискретные связи, так как щелочность моря в основном зависит от изменений щелочности реки.

Весной обнаруживаются наиболее высокие значения щелочности. Затем летом под влиянием волжского стока они понижаются. Наиболее стабильными величинами щелочности характеризуется зона среднекаспийских вод. Суточные изменения щелочности свидетельствуют о том, что она является показателем фотосинтетических процессов, протекающих в море. В суточном ходе нередко наблюдается увеличение щелочности и падение pH при постоянной солености. Суточная амплитуда щелочности иногда составляет около 1 мг-экв/л. Обнаружены почасовые связи значений щелочности с хлором. В тех случаях, когда распределение щелочности по вертикали не однородно, щелочность так же, как и соленость, ко дну повышается. Наиболее значительные изменения щелочности по вертикали наблюдаются в районе свала глубин и юго-западном районе.

Биогенные вещества. По сравнению с периодом до зарегулирования концентрации фосфатов и кремнекислоты в Северном

Каспии снизились (примерно в два раза). Правда, обращает на себя внимание увеличение кремния в восточной части моря, что, по-видимому, связано с тем, что здесь обнаруживаются наиболее низкие титры диатомовых и происходит накопление кремния. Содержание нитритов в период после зарегулирования не изменилось по сравнению с периодом до зарегулирования.

В разные сезоны фосфаты распределяются довольно однородно по всей акватории моря и с глубиной. Их количество колеблется от 0 до 10 мкг/л. Наиболее высокие величины кремния наблюдались в районе непосредственного влияния стока Волги, наименьшие - в водах с высокой соленостью. Весной в западной части моря кремний либо отсутствовал вообще, либо был в очень незначительных количествах. В июне содержание кремния велико, но в июле и октябре оно уменьшается в связи с потреблением диатомовыми. Повышенное содержание нитратов, до 70 80 мкг/л, наблюдалось у западного побережья, в районе, находящемся под непосредственным влиянием волжского стока. В открытой части моря их содержание колеблется от 0 до 5 мкг/л.

Кремний служит хорошим показателем распределения речных струй в море и может быть использован для характеристики водных масс. Содержание нитритов очень невелико в море и, как правило, нитриты быстро потребляются фитопланктоном.

Суточные колебания фосфатов и кремнекислоты изменяются по сезонам, особенно это существенно для кремнекислоты. Наибольшие суточные колебания кремния и фосфатов наблюдаются летом. Весной и осенью суточные колебания кремния и фосфатов уменьшаются. Накопление биогенов обнаруживается в вечернее время, а днем они существенно снижаются за счет потребления фитопланктоном. Однако суточный ход этих элементов в значительной степени зависит от динамики водных масс, и влияние гидрометеорологических факторов оказывается настолько сильным, что затушевывает картину фотосинтетической деятельности.

Окисляемость. Наибольшие значения окисляемости наблюдались в апреле в северо-западной части моря, минимальные в южной. Летом на юге окисляемость значительно повышалась. Это объясняется проникновением речных вод далеко на юг. Осенью значения окисляемости сильно падали. Максимальные средние величины окисляемости характерны для северо-западного района Северного Каспия и предустьевого взморья Урала. Окисляемость оказывается в ряде случаев хорошим показателем распределения речных струй в море. Во все сезоны наблюдалось уменьшение окисляемости по мере продвижения к морю.

Исследователи, занимавшиеся изучением химического стока рек бассейна Каспийского моря, указывают на изменения, происшедшие в речном ионном и биогенном стоке в результате его зарегулирования. Так, из работ Зенина (1964) и материалов, со-

бранных Астраханской ГМО, видно, что после создания Куйбышевского и Волгоградского водохранилищ годовая величина минерализации не изменилась, но изменения минерализации в течение года имеют более плавный характер, чем до зарегулирования Волги. Создание Куйбышевского и Волгоградского водохранилищ, по данным Зенина, благоприятно отразилось на режиме кислорода зимой 1957-58 г. В результате накопления в Куйбышевском водохранилище больших количеств воды с высоким содержанием кислорода перед ледоставом, что связано с сильным понижением температуры воды и хорошим ветровым перемешиванием, Нижняя Волга зимой питается водой, содержащей большое количество кислорода.

По данным Барсуковой, за последние годы содержание биогенных веществ, особенно фосфатов, в реке снизилось более чем в два раза.

Наблюдающееся уменьшение амплитуды суточных колебаний кислорода по сравнению с аналогичной амплитудой в период до зарегулирования свидетельствует о снижении интенсивности процессов фотосинтеза в море. Такое уменьшение интенсивности процессов фотосинтеза объясняется резким падением содержания фосфатов и кремния в море в период после зарегулирования. Количественные изменения водного стока прежде всего сказываются на режиме солености Северного Каспия.

В связи с предполагаемыми мероприятиями (безвозвратным водозабором, подачей стока Печоры и Вычегды в количестве $10-38$ км 3 и ограничением оттока в Кара-Богаз-Гол) необходимо было уточнить, в каком направлении произойдут изменения гидрохимического режима Северного Каспия. Если учитывать только безвозвратный водозабор, то при обеспеченности стока на 50% соленость Северного Каспия повысится до $11,3 \%$, его западного района - до 10,3 , восточного - до $12,4 \%$. Если учитывать водозабор и оптимальные цифры переброски вод, то к 2000 г. соленость всего Северного Каспия повысится на 1% по сравнению со средней величиной солености за 1956-1962 гг., его западного района - на 0,5 , восточного - на 2%. Если учитывать водозабор и минимальные цифры переброски вод, то в 2000 г. соленость всего Северного Каспия повысится на 2,2, его западного района - на 1, восточного - на $3,8 \%$ по сравнению со средней величиной солености за 1956-1962 гг.

Полученные в различные сезоны связи хлора с содержанием силикатов и щелочности показали, что в среднем содержание силикатов уменьшается на 200 мг/л с повышением хлора на 1%; величина щелочности в среднем повышается на 0,3 мг-экв/л с повышением хлора на 1%.

В свете указанных выше вычисленных данных изменения солености можно высказать некоторое предположение относительно количественных изменений щелочности и кремния в будущем.

Так, ожидаемое в западной части Северного Каспия максимальное увеличение солености вызовет уменьшение средних величин кремния примерно на $200 \mathrm{mкг} /$ л, в то же время величина щелочности повысится на 0,3 мг-экв/л. Из-за отсутствия систематических ежегодных наблюдений над биогенными веществами и водным стоком трудно найти удовлетворительную зависимость между ними. Тем не менее можно сказать, что резкое уменьшение водного стока приведет к еще большему снижению в море содержания биогенных веществ и прежде всего фосфатов.

Таким образом, последующее зарегулирование водного стока вызовет существенные изменения в химическом стоке и прежде всего уменьшение биогенного стока, что в свою очередь должно отразиться на продуктивности Северного Каспия.

[^0]: ${ }^{1}$ Средние годовые величины биогенов условны в данной работе, так как наблюдения в зимний период не производились.

