с участием Института географии АН Азербайджанской ССР. Гидрохимические работы на судах и в лаборатории выполнялись силами ГОИНа и Бакинской ГМО.

Целью поставленной работы являлось освещение особенностей гидрохимического режима моря и отдельных его районов, а также физико-химических свойств и солевого состава каспийских вод. При выполнении работы использован собранный в экспедициях 1959—1963 гг. материал. Привлечены для сравнения все имеющиеся литературные и архивные материалы.

Глава II

солевой состав вод каспийского моря

Воды океана и открытых морей отличаются, как известно, постоянством соотношений между главными элементами солевого состава. Экспериментально определено строгое соотношение между соленостью, хлорностью, удельным весом и плотностью для океанской воды. На этом основании в 1940 г. под руководством Н. Н. Зубова (1957) были составлены «Океанологические таблицы», которыми широко пользуются в океанографической практике. В морях, имеющих ограниченный обмен с океаном или совершенно не соединенных с ним, также существует постоянство солевого состава, для каждого моря свое, но заметно отличное от солевого состава вод океана (табл. 61).

Ионный состав вод, а следовательно, и отношения между компонентами в разных морях и в океане различны. Для Каспийского моря соотношение между соленостью и хлорностью было установлено Лебединцевым (1901) на основании анализа проб воды, отобранных в 1897 г. в Среднем Каспии. Оно имеет следующий вид: $S_{\infty}^{*}=2,386C1_{\infty}^{*}$. Позднее (по данным 1933 г.) очень близкое к этому соотношение $S_{\infty}^{*}=2,396C1_{\infty}^{*}$ было найдено Бруевичем (1937) для вод Южного Каспия. Как видно из этих соотношений, вода открытой части Среднего и Южного Каспия отличается большой однородностью; она называется нормальной или истинной каспийской водой. Для нее экспериментально также установлено строгое соотношение между соленостью, хлорностью, плотностью и удельным весом (Трофимов, 1939).

Северная часть Каспийского моря, благодаря мощному волжскому стоку, заполнена опресненными водами с иными физикохимическими свойствами, чем более соленые морские воды Среднего и Южного Каспия. Зависимость между соленостью и хлорностью для вод Северного Каспия, теоретически полученная Трофимовым (1939), выражается уравнением S₀₀=0,14+1,36С1₀₀. Правомочность его подтверждена также экспериментальными работами А. А. Мусиной и Н. И. Микей (1941). Свободный член уравнения характеризует пресноводную составляющую волж-СКИХ ВОД.

Таблица 61

	Оке	an 1	Черное	Mope ²	Азовско	е море ^а	Каспиі мор			ьское ре ⁵
Ионы	г/кг	% экв.	г/кг	% экв.	r/kr	% экв.	г/кг	% экв.	r/ĸr	% экв.
Na' K' Ca" Mg"	10,56 0,38 0,41 1,27	0,82 1,72	5,795 0,253 0,697	39,14 1,96 8,90	0,140	0,84 2,16	$0,100 \\ 0,334$	0,58 3,83	1,946 0,097 0,413 0,459	28,76 0,90 7,57 12,77
Σ % экв. ка- тионов		50,00		50,00		50,02		49,99		50,00
Cl' Br' SO ₄ " HCO ₃ '	18,98 0,06 2,65 0,14	0,06 4,64	10,230 1,440 0,198	44,84 4,66 0,50	0,996	0,06	5,347 0,007 3,038 0,214	$0,02 \\ 14,55$	3,009 0,0013 2,690 0,172	29,09 0,00 19,62 1,29
Σ ⁰ / ₀ экв. анионов		49,89		50,00		49,91		49,99		50,00
Σ ионов и ^{0/} 0 экв. ка- тионов и анионов	34,45	99,89	18,614	100,00	12,463	99,93	12,936	99,98	8,787	100,00

Сравнительный ионный состав вод океана, Черного, Азовского, Каспийского и Аральского морей (по средним данным для открытого моря)

По Свердрупу, Джонсону и Флемингу.
 По Скопинцеву (1958), для поверхностных вод.
 По Цуриковой (1960).
 По Лебединцеву (1901) и Бруевичу (1937).
 По Блинову и Цуриковой (1956).

«Океанологические таблицы», составленные для океанских вод, неприменимы для Каспийского моря и других внутренних морей. Впервые «Океанологические таблицы» для Каспийского моря составлены в 1949 г.

Основанием для составления таблиц послужили теоретические и экспериментальные работы лаборатории гидрохимии ВНИРО, выполненные Трофимовым под руководством Бруевича.

Эти таблицы в 1961-1962 гг. расширены коллективом сотрудников лаборатории химии моря ГОИНа (А. С. Пахомовой, Г. В. Лебедевой) и кафедры океанологии географического факультета МГУ (А. Н. Косаревым, А. Н. Спидченко).

В результате всех исследований, проведенных на основании большого количества химических анализов вод Каспийского

моря, количественная зависимость между хлором и соленостью была установлена в достаточной степени точно.

Каспийское море — замкнутый водоем; в силу своего меридионального расположения оно обладает рядом физико-географических особенностей и прежде всего разнообразием климатических условий, что накладывает свой отпечаток на химический состав вод.

Солевой состав вод Каспийского моря изучался рядом исследователей. Лебединцев (1901) впервые исследовал химические свойства воды в условиях судовой лаборатории. На полный химический анализ взяты четыре пробы воды из Среднего Каспия (табл. 62), две из них собраны в мае и июне 1897 г. в восточной части моря у входа в залив Кара-Богаз-Гол (Лебединцев) и две в мае 1893 г. в западной части, недалеко от Баку (Остроух и Гершкович).

Таблица 62

№ ана- лиза	Na	ĸ	Ca	Mg"	CI'	Br'	SO4″	CO ₃ ″	Сумма ионов
1 2 3 4	3,0377	0,0790	0,3498 0,3333	0,7186	5,3129 5,2930	0,0079	3,0276 3,0180	0,1133 0,1091	12,7735 12,6462 12,6668 12,8014

Солевой состав каспийской волы (г/кг) по А А Лебелиниеву

Среднее 3,1360 0,0815 0,3360 0,7238 5,2990 0,0080 3,0286 0,1092 12,7220 Примечания: 1. Анализ 1 (Остроуха), анализ 2 (Гершковича) сдела-

ны под руководством Лебединцева; западняя часть моря, недалеко от Баку. 2. Анализы 3 и 4 — восточная часть моря у залива Кара-Богаз-Гол.

Солевой состав основной воды Южного Каспия исследован Бруевичем (1937). Пробы были собраны в августе 1933 г. на восьми станциях, из них на трех глубоководных станциях, кроме поверхностных проб, отбирались и придонные. Химический анализ сделан опытными химиками-аналитиками Опариной и Голубевой (табл. 63, 64).

В 1939 г. Мусиной и Микей (1941) была выполнена преимущественно для Северного Каспия работа по установлению точных величин соотношения между соленостью и хлором по материалам. собранным в августе 1938 г. Одновременно они определили солевой состав вод разных районов северной части Каспийского моря и нашли, что он постепенно меняется от предустьевого пространства к центральной части. Происходит метаморфизация вод, и опресненные воды Северного Каспия постепенно осолоняются и приобретают свойства основной морской воды Среднего и Южного Каспия. В Среднем и Южном Каспии исследователями взяты только четыре единичные пробы, анализ

Анализы воды Южного Қастия сборов I1—21/VIII 1933 г. (г/кг), по Опариной и Голубевой Голубевой 153 6. м 28 0.0835 3.1627 0.0835 3.2157 0.0845 3.1765 0.0845 3.1797 3.2036 3.1111 3.1614 3 1 3.1439 3.1627 3.2157 3.2730 3.1765 3.1797 3.2036 3.2111 3.1614 3 0.0835 0.0853 0.0853 0.0843 0.3443 0.3433 0.3465 0.0846 0.3423 0.3465 0.3422 0 0.7246 0.7330 0.7333 0.7333 0.7333 0.7333 0.3465 0.3422 0 0 0.3422 0 0.3422 0 0.3422 0 0 0.3422 0 0.3425 0 0.3422 0 0.3422 0 0.3422 0 0 0.3422 0 0 0 0 0.3422 0 0 0 0.3422 0 0 0 0 0 0 0 0 0 0

Tabauya 64	71 920 915	139,54	2,08	17,43	60,30	219,35	151,87	0,10	63,15	3,64	218,76	438,11	
Tai	71 920 0	137,47	2,15	17,18	59,64	216,34	150,10	0,09	62,24	3,62	216,05	432,39	
	973 970	139,63	2,19	17,29	60,54	219,65	152,55	0,09	63,26	3,67	219,57	439,22	
тубевой	973 973 0	137,43	2,16	19,16	59,99	216,74	149,87	0,09	62,38	3,62	215,96	432,70	
ной и Го.	58 471 465	139,30	2,14	17,37	60,28	219,09	151,84	0,09	63,12	3,67	218,34	434,43	
по Опари	62 471 0	138,27	2,11	17,16	60,06	217,60	150,84	0,09	62,35	3,55	216,83	434,43	
IT-9KB/KT),	666 0	138,13	2,17	17,17	60,03	217,50	150,55	0,09	62,84	3,60	217,08	434,58	
Каспия (м	36 7,5 0	142,54	2,22	17,41	62,13	224,30	155,92	0,09	64,69	3,41	224,11	448,41	
Состав воды Южного Каспия (мг-экв/кг), по Опариной и Голубевой	50 0 M	139,83	2,18	17,34	60,56	219,81	152,41	0,09	63,15	3,56	219,21	439,12	
остав водь	28 74 0	137,53	2,20	17,21	60,28	217,22	149,87	0,09	62,44	3,59	215,99	433,21	
Ŭ	1538	136,69	2,14	17,15	59,59	215,57	149,26	0,09	61,99	3,60	214,49	430,51	
	Станиня	Na [•]	K.	Ca"	Mg.	Сумма катионов	Cl	Br'	SO4"	CO3"	Сумма анионов	Сумма катионов и і нионов	

которых показал близкое сходство с данными Лебединцева и Бруевича.

Детальное освещение физико-химических свойств каспийской воды (хлорности, солености, плотности и электропроводности) и критический обзор экспериментальных работ по их определению даются в статье Блинова (1962).

Химия речного стока в Каспийское море изучалась Бруевичем и Аничковой (1941). Так как 80% водного стока в Каспийское море приходится на Волгу, то для сравнения ионного состава каспийской воды авторы взяли данные по ионному составу волжской воды. Большое содержание карбонатов и сульфатов в последней обусловливает обогащение этими компонентами и морской воды (табл. 65).

Таблица 65

	Волга	Каспийск	ое море	
Ионы	у Астрахани	a	б	Океан
Na K Ca Mg Cl' Br' SO4" CO3"	$ \begin{array}{c} 6,67\\ 23,34\\ 4,47\\ 5,46\\ 25,63\\ 34,43\\ 0,19856\\ \end{array} $	$\begin{array}{r} 24,82\\ 0,66\\ 2,70\\ 5,70\\ 41,73\\ 0,06\\ 23,49\\ 0,84\\ 12,68-12,94\end{array}$	$\begin{array}{r} 24,69\\ 0,63\\ 2,59\\ 5,66\\ 41,67\\ 0,08\\ 23,82\\ 0,86\\ 12,63-12,80\end{array}$	30,598 1,106 1,197 3,725 55,292 0,188 7,692 0,207 35,00

Примечание. а — данные Бруевича (Южный Каспий), б — данные Лебединцева (Средний Каспий).

Материал и методика исследований

В 1961—1963 гг. в экспедициях одновременно со стандартными гидрохимическими наблюдениями отобраны также пробы воды на исследование ионного состава. В Среднем Каспии, в открытой части, взяты пробы поверхностной и придонной воды. В Южном Каспии пробы собраны в основном на двух разрезах: о. Куринский Камень — о. Огурчинский и Ленкорань — Белый Бугор. На станциях 80 и 89, кроме поверхностных проб, взяты придонные. К южной части моря отнесен разрез о. Жилой — маяк Куули. Исследованы пробы воды, взятые в сентябре и октябре 1963 г. в разных районах взморья у южного побережья Ирана.

Исследован также солевой состав вод западной и восточной прибрежных частей Среднего Каспия. Западная его часть находится под опресняющим воздействием речного стока. В восточной части в теплый период года наблюдается аномальное распределение температуры и выход на поверхность более соленых вод.

Химические анализы проводились в Москве в лаборатории химии моря ГОИНа Лебедевой под руководством и при участии автора. Щелочность, кроме того, определялась вскоре после взятия пробы воды в судовой лаборатории.

В процессе изучения гидрохимического режима Северного Каспия Б. М. Затучная в июле 1962 г. взяла пробы воды на исследование солевого состава и определила основные его компоненты: кальций, магний, щелочность. Определение сульфатов и все расчеты, выраженные в различных формах, выполнены Г. В. Лебедевой.

Схема станций, на которых взяты пробы воды на анализ, представлена на рис. 38. Пробы воды на определение солевого состава брались в поллитровые бутылки с фарфоровой пробкой и резиновой прокладкой, закрывающиеся пружинным замком. Бутылки были хорошо выщелочены благодаря многолетнему хранению в них морской воды.

Хлор определялся аргентометрическим методом. О. П. Опарина и М. Г. Голубева применяли весовой метод определения хлора. С. В. Бруевич сопоставил величины хлора, полученные весовым способом и титрованием, и нашел, что из 11 анализируемых проб только две дали ощутимые расхождения, для остальных же девяти средние результаты были тождественны (Бруевич, 1937).

Бром нами не определялся, так как содержание его в морской воде настолько мало (по литературным данным, среднее для каспийской воды — 0,007 г/кг), что оно находится в пределах точности применявшихся методов анализа и не изменяет существенно результаты, полученные для других элементов.

Сульфаты определялись весовым методом путем осаждения сернокислого бария из навески воды в 50 г. Осаждение велось горячим раствором BaCl₂ при непрерывном помешивании. После 12-часового и даже суточного стояния в теплом месте осадок фильтруют ¹, промывают, высушивают, озоляют, сжигают и выдерживают в электропечи при 700° до постоянного веса.

Щелочность — связанная угольная кислота — определялась прямым титрованием точного объема воды раствором соляной кислоты 0,02 нормальности с применением смешанного индикатора (Руководство по морским гидрохимическим исследованиям, 1959). Для удаления образующейся при реакции свободной СО₂ через воду при титровании пропускался воздух, лишенный СО₂.

¹ Чтобы избежать прохождения осадка через фильтр (что нередко имеет место), рекомендуется перед фильтрованием прибавить к осадку измельченные кусочки фильтровальной бумаги с дистиллированной водой.

Результаты выражались в мг-экв HCO₃/л, так как при содержании гидрокарбонатов в каспийской воде, достигающем 96,7%, ион HCO₃' доминирует.

Кальций и магний определялись комплексометрическим методом, разработанным и предложенным для морских и океанских вод Скопинцевым (Скопинцев и Кабанов, 1958). Это объемный метод, в котором титрование ведется при разных индикаторах: эриохром черный для суммы кальция и магния и мурексид отдельно для кальция. Магний высчитывался по разности. По данным Скопинцева, этот метод дает высокую сходимость величин кальция и магния с величинами, приведенными в работах других авторов и установленными весовым путем. Преимуществом комплексометрического метода перед другими является также его простота и значительно меньшая трудоемкость, что очень важно при массовых анализах.

Во многих пробах кальций и магний определены и весовым путем.

Натрий и калий экспериментально не определялись. Их содержание вычислено по разности между суммой анионов и суммой катионов, выраженных в миллиграмм-эквивалентной форме. Для выражения щелочных ионов в весовой форме полученная величина пересчитана на натрий, так как содержание калия по сравнению с натрием очень мало.

Результаты анализов даны в весовом (грамм-ионы в 1 кг воды и в процентах от суммы ионов) и в эквивалентном выражении (миллиграмм-эквивалентах и процент-эквивалентах). Последняя форма выражения более рациональна и удобна при сравнении ионного состава вод разной минерализации.

Солевой состав вод Среднего и Южного Каспия

Полученные результаты химических анализов, сведенные в табл. 66—69 для Среднего Каспия и табл. 70—73 для Южного, позволяют дать характеристику ионного состава каспийских вод, а также выявить те факторы, которые вызывают метаморфизацию нормальной каспийской воды в отдельных районах моря. Рассмотрим колебания в воде основных солеобразующих компонентов.

Хлорность в открытой части Среднего Каспия колеблется незначительно и составляет в среднем 5,44‰. В западной прибрежной части, находящейся под влиянием волжского стока, хлорность меньше, 5,31‰. В восточной части, наоборот, она повышена и достигает 5,66‰ (Казахский залив). Это результат отсутствия материкового стока и сильного испарения в жаркое время года на мелководье.

В Южном Каспии хлорность увеличивается к югу и востоку. Так, на разрезе о. Куринский Камень — о. Огурчинский она

	сумма ионов	12,9856 12,9996 13,0084 13,0215	! _	$\left \begin{array}{c}11,5808\\12,5473\\12,2592\end{array}\right $	12,7397 12,8737 12,5549		
	в пересчете на Na*	3,2349 3,2369 3,2391 3,2423	1	$\left \begin{array}{c}2,7781\\3,1205\\3,0854\end{array}\right $	3,1791 3,2003 - 3,1033		3,4757 3,4757
	w	0,7430 0,7447 0,7446 0,7446 0,7465 0,7450	0,/43/	0,7203	0,7273 0,7364 0,7345		0,7558 0,6986 0,6842 0,6886 0,6876
(r/kr)	Ca:	0,3530 0,3530 0,3525 0,3528 0,3528 0,3515	П 0,3521 Пием	0,3185 0,3360 0,3265	0,3414 0,3452 0,3453		$\begin{array}{c} 0, 3421 \\ 0, 3411 \\ 0, 3468 \\ 0, 3468 \\ 0, 3419 \\ 0, 3449 \end{array}$
Ионный состав вод Среднего Каспия (г/кг)	HCO ₃ '	моря 0,2172 0,2147 0,2183 0,2183 0,2170	5,44 0,3 пограничный с Северным Каспием	0,2252 0,2218 0,2157	ная часть 0,2212 0,2219 0,2245	ная часть	0,2294 0,2334 0,2230 0,2342 0,2328
зод Средне	śo,"	Открытая часть моря 44 2,9975 0,2 43 3,0103 0,2 45 3,0129 0,2 46		$\left \begin{array}{c}2,7587\\2,9750\\2,8160\end{array}\right $	Западная прибрежная часть 5,32 2,9507 0,2212 5,32 3,0799 0,2219 5,32 2,8273 0,2245	Восточная прибрежная часть	3,0808
ий состав н	CI'+ Br'	Orkp 5,44 5,44 5,45 5,45 44	5,44 пограничн	4,78 5,18 5,13	Западна 5,32 5,32 5,32	Восточна	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Ионнь	Горизонт,	2800	район.	000	000		8 ¹⁸ 3300
	Глубина станции,		150	> 14 22 14	33.75		10 33 19,5 21
	Дата пробы	VIII 1961 11 1962		VIII 1962	VIII 1962		VIII 1962 20—21 1X 1963
	Станция	42 6/N ^b 1 2		12 15 18	3333 3353		498ДЯ

	Сумма ионов		438,748 439,198	439,320 439,946 		$\left \begin{array}{c} 391,840\\ 423,296\\ 413,656\end{array}\right $		$\left \begin{array}{c}430,162\\433,874\\425,130\end{array}\right $		
	Na + К в пересчете на Na		140,655 140,740	140,834		120,792 136,163 134,152		$138,226 \\ 139,150 \\ 134,930$		$\begin{array}{c} - \\ - \\ 149,603 \\ 151,120 \\ - \end{array}$
	mg			61, 236 61, 392 61, 269 61, 162		59,234 58,719 56,382		59,817 60,563 60,403		62,161 57,453 56,269 57,453 56,548 56,548
(B/KL)	Ca:		17,615	17,590 17,605 17,540 17,570	5M	15,894 16,766 16,294		17,038 17,224 17,232	Sur a	17,072 17,021 17,305 17,210 17,210
Ионный состав вод Среднего Каспия (мг-экв/кг)	Сумма анионов	ря	219,374	219,660 219,973 	Северным Каспием	195,920 211,648 206,828	часть	215,081 216,937 212,565	I 4acrb	
днего Кас	HCO ₃ '	Открытая часть моря	3,558	3,554	с Северн	3,689 3,633 3,533	ибрежная	3,623 3,635 3,677	рибрежная	3,749 3,823 3,653 3,836 3,813
ив вод Сре	SO4"	Открытая	62,408 62,674	62,958	раничный	57,436 61,939 58,629	Западная прибрежная часть	61,434 64,124 58,864	Восточная прибрежная часть	$\begin{bmatrix} - & - & - \\ - & - & - \\ 65,812 & - & - \end{bmatrix}$
нный соста	Cl'+ Br'		153,408	153,126 153,690 153,408 153,408	Район, пограничный	134,795 146,076 144,666	3a	$\begin{array}{c} 150,024\\ 149,178\\ 150,024 \end{array}$	Bo	$\begin{array}{c} 155,392\\ 155,946\\ 155,382\\ 155,382\\ 155,946\\ 156,792\end{array}$
Ио	тногиот, м		0	0000	Р	000		000		5083300 518330
	станции, м Глубина		009	330 440 150		14 22 14		25 33 33		10 33 34 19,5 21
	Дата		VIII 1961	11 1962		13 VIII 1962		20 VIII 1962 19 VIII 1962		18 VIII 1962 20—21 IX 1963
	Станция		42	6/Ne 1 3		12 15 18		38 50 50		4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Сумма нонов	00000000000000000000000000000000000000		99,99 100,00 100,00	100,01
Na ⁺ + K [*] в пересчете на Na [*]	288888888 28888888 288888888 2888888888		22,43 32,43 32,13 31,74 31,74	33,52 33,49
mg	13,93 13,94 13,94 13,96 12,93 12,93 12,93 12,92	12,29 12,77 (15,12) 13,87	13,63 13,90 13,96 13,96 14,21	12,61 12,73
ca.:	4,4,4,6,6,6,6,6 10,00,00,00,00,00,00,00,00,00,00,00,00,0	3,855 4,00 4,06 3,06	3,94 3,96 4,05	3,88
HCO ₄ ′	моря 0,81 0,81 0,81 0,88 0,88 0,88 0,88 0,88	34,62 14,54 0,85 3 34,56 14,58 0,87 4 Район пограничный с Северным Каспием 34,40 14,66 0,94 4	0,85 138 часть 0,84 0,86	ная часть 0,82 0.85
so,"	Открыттая часть моря 7 14,22 0,8 4 14,22 0,8 14,25 0,8 3 14,26 0,8 14,64 0,8 14,64 0,8 14,64 0,8 14,64 0,8	14,54 14,58 чный с Сев 14,66		Восточная прибрежная часть 44,81 14,37 0,82 14.56 14,59 0,85
Cl'+ Br'	OTKP 34,97 34,98 34,93 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,44 34,54 34,54 34,54 34,54 34,54 34,54 34,55 3	34,62 34,56 34,56 он пограни 34,40	34,97 Западная 34,38 34,38 35,29	Восточн 34,81 34 56
Горизонт, м	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			32
Глубина станцин, м	600 550 550	317 317 317	25 14 33775 14	10.5 24
Дата	VIII 1961 VIII 1962 VIII 1963	VIII 1962	VIII 1962	IX 1963
Станция	42 6/\\\begin{pmatrix}6/\ 123323		83550 ISE	

	Ca Mg Na+ K Ca Mg a nepeevere ua 2,72 5,72 24,90 2,71 5,73 24,90 2,71 5,73 24,90 2,71 5,73 24,90 2,71 5,73 24,90 2,71 5,73 24,90 2,71 5,73 24,90 2,51 5,73 24,90 2,54 5,16 25,93 1 2,55 25,94 1 2,54 5,10 2,54 5,10 25,91 1 2,55 95 1 2,56 5,19 2,56 5,10 25,91 1 2,56 25,91 1 2,56 25,91 2,56 25,91 11 2,68 5,10 25,91 2,68 5,59 24,87 2,68 5,59 25,47 2,66 25,59 23,99 2,66 25,59 24,87 2,66 25,59 24,87 2,66 25,59 25,91 2,66 25,59 24,87 2,66 25,59 25,91 2,66 <t< th=""></t<>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73 5,72 24,91 63 5,73 24,91 63 5,73 24,91 63 5,73 24,90 63 5,73 24,90 63 5,73 24,90 63 5,73 24,90 63 5,73 24,90 63 5,73 24,90 63 5,16 25,93 64 5,519 25,93 65 25,93 100 66 25,93 100 75 5,91 100 75 25,93 100 75 25,93 100 75 25,93 100 74 25,93 100 75 23,99 100 76 25,93 100 77 23,99 100 78 23,99 100 77 23,99 100 77 23,99 100 77 23,99 100 77 23,99 100 77 23,99 100 77 23,99 100 77 23,99 100 77 23,99 100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	72 5,72 24,91 5,72 5,73 24,90 5,73 5,73 24,90 5,73 5,73 24,90 5,73 5,73 24,90 65 5,16 25,93 65 5,19 25,93 66 5,19 25,93 66 5,19 25,93 67,10 25,93 100 66 25,93 100 67,10 25,93 100 66 25,93 100 75 5,91 100 76 5,53 23,93 77 23,93 100
2,71 2,71 2,71 2,56 5,73 2,56 5,73 2,48 5,16 2,5,86 99 99 99 99 99 99 99 99 99 99 100 25,94 100 25,94 100 25,94 100 25,94 100 100 100 100 100 100 100 100 100 10	71 5,72 24,90 55 5,73 24,90 56 5,73 24,90 57 5,16 25,93 56 5,16 25,93 57 100 25,93 63 5,10 25,93 57 10 25,93 56 5,10 25,93 57 10 25,93 66 5,10 25,93 56 23,93 100 66 25,93 100 55 29 100 56 23 24,90 66 25,93 100 56 23,93 100 57,93 23,93 100 57,93 23,93 100 56 23 24,90 57,93 25,93 100 56 23,93 100 57,93 23,93 100 57,93 23,93 100 57,93
2,52 2,56 2,56 2,56 2,56 5,18 2,5,86 5,19 2,5,48 5,19 2,5,91 2,5,91 2,5,91 100, 25,91 100,000 25,91 20,910000000000000000	556 5,54 25,53 551 5,16 25,93 55,16 55,19 25,93 55,10 25,93 100, 55,10 25,93 100, 55,10 25,93 100, 55,10 25,93 100, 55,93 5,10 25,93 55,10 25,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 23,93 100, 55,53 100, 100,
2,51 5,16 25,93 100, 2,36 5,27 25,95 100, 2,54 5,19 25,94 100, 2,54 5,19 25,94 100, 2,55 5,10 25,91 100,	51 5,16 25,93 100, ,36 5,27 25,93 100, ,54 5,19 25,94 100, ,5,19 25,94 100, 100, ,57 5,19 25,94 100, ,57 5,19 25,94 100, ,63 5,10 25,94 100, ,56 2,19 25,94 100, ,63 5,10 25,91 100, ,66 2,50 25,91 100, ,66 2,50 25,91 100, ,66 2,53 23,99 100, ,66 2,53 23,99 100, ,66 2,53 23,99 100, ,66 2,54 100, 90,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2,54 5,19 25,91 100, 2,63 5,10 25,91 100,	75 5,19 25,91 100 63 5,19 25,91 100 75 6,22 23,99 100 66 5,69 23,99 100 66 5,59 23,99 100
	75 6,22 23,99 100, 68 5,69 24,87 100, 66 5,59 24,87 99 99
1,94 2,75 6,22 23,99 100,01 1,77 2,68 5,69 24,87 100,00 1,76 2,66 5,59 25,17 99,99 ная часть	
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$	2,68 5,71 24,95 100, 2,68 5,72 24,86 99, 9,75 5,85 94,70 100,
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$

бывает преимущественно ниже 5,47‰, а на разрезе Ленкорань — Белый Бугор незначительно выше 5,51‰. При этом на обоих разрезах хлорность возрастает на восточных станциях, достигая в полученных нами пробах 5,65 или 13,48‰S (станции 84, 94, 95).-Увеличение хлора на востоке объясняется отсутствием разбавляющего действия речного стока и интенсивным испарением с общирного мелководного пространства в теплый период года. По глубине хлорность колеблется незначительно.

Сульфаты содержатся в воде Каспийского моря в большем количестве, чем в океане и других морях, кроме Аральского (табл. 61). В среднем Каспии содержание сульфатов в среднем составляет 14,5% экв., в Южном - 14,4% экв., а в Аральском море — 19,6% экв. Источником сульфатов в Каспийском море служит волжский сток. По данным 1961 г. (Зенин и др., 1964), средняя годовая величина сульфат-иона равна 15,1% экв. В Северном Каспии в среднем из 11 проб поверхностной воды, взятых равномерно по всей акватории моря, эта величина составляет 14,78% экв. Сравнение величин SO4" по отдельным частям моря показывает их убывание с севера на юг, т. е. с удалением от источника. В более минерализованных водах отдельных районов моря наблюдается увеличение сульфатов. В Среднем Каспии содержание сульфатов увеличивается в следующем порядке: район пограничный с Северным Каспием — 2,8466 г/кг, западная прибрежная часть, находящаяся под влиянием речного стока,-2.9526 г/кг; открытая часть — 3,0112 г/кг и восточная часть — 3,1209 г/кг. В Южном Каспии наименьшее количество сульфатов (2,9512 г/кг) наблюдалось в западной и южной прибрежных частях с хлорностью 5,12‰, наибольшее (3,1669 г/кг) — в юго-восточной части моря, где хлорность достигает 5,65‰.

Щелочность определяет содержание в воде различных форм угольной кислоты, главным образом, солей кальция и магния или карбонатов. Абсолютная щелочность каспийской воды больше, чем в других морях. Воды Каспия пересыщены карбонатами, что экспериментально установлено рядом исследователей. Из всех форм угольной кислоты преобладает гидрокарбонат кальция. Повышенные значения ионов HCO₃' отмечены на станциях 77—80, находящихся в западной части моря, в зоне влияния куринских вод. Наоборот, на восточных станциях, особенно на станциях 92, 94 и 95, наблюдается пониженная щелочность. Здесь осаждается СаСО₃ из пересыщенной им воды при соприкосновении на мелководье с твердой фазой — донными карбонатными осадками.

Содержание кальция колеблется по горизонтали и по вертикали незначительно, некоторое увеличение его прослеживается в южной части. Накопление кальция в воде ограничивается действием различных факторов. Прежде всего кальций является подвижным членом системы карбонатного равновесия. При на-

Таблица 70	Сумма вонов		1	13,0877	Ţ	1	1	13,1332	13,1583	1	13,0382	13,1216	13,0484	13,0714	13,0227		13,0613
Ţ	Na + K в пере- счете на Na		1	3,2547	١	1	1	3,2448	3,2682	1	3,1691	3,2644	3,2331	3,2464	3,2251		3,2569
	"Wg		0,7416	0,7466	0,7609	0,7538	0,7757	0,7605	0,7575	0,7757	0,7857	0,7500	0,7516	0,7543	0,7540		$\begin{array}{c} 0,7523\\ 0,7410\\ 0,7553\\ 0,7555\end{array}$
	Ca:		0,3577	0,3573	0,3655	0,3610	0,3500	0,3643	0,3546	(0, 3390)	0,3687	0,3603	0,3631	0,3547	0,3567		0,3489 0,3563 0,3544
пия (г/кг)	HCO ₃ '		0,2223	0,2239	0,2223	0,2236	0,2090	0,2187	0,2212	0,2139	0,2102	0,2158	0,2107	0,2115	0,2190		0,2164 0,2141 0,2113 0,2132
жного Кас	so,"	асть моря	1	3,0852	1	Î	1	3,0749	3,0868	1	3,0445	3,0511	3,0299	3,0455	3,0279	ий район	3,0730
ав вод Юз	Cl'+Br'	Открытая часть моря	5,41	5,42	5,47	5,47	5,47	5,47	5,47	5,46	5,46	5,48	5,46	5,46	5,44	Апшеронский район	(5,35) 5,42 5,47 5,45
Ионный состав вод Южного Каспия (г/кг)	Горизонт,	0	0	0	0	0	0	0	0	0	0	0	750	0	750	4	0000
Ис	Глубина,		310	800	200	800	450	80	40	240	34	763		780			24 197 110 14
	Дата взятия пробы		1961 IIIA									VIII 1962					VIII 1962
	, Станция		11	78	62	80a	81	82	83	92	93	80		89			57 66 65 65

	3,1028 12,4418	12,4670		1	1	13,5401		10,1583	12,8880		12,4624	1	1	1	12,4393
	3,1028	3,2469		1	1	3,3538		2,6108	3,2332		3,2943	1	I	1	3,2858
	0,7083	0,6424		0,8165	0,8050	0,7883		0,5306	0,6940		0,5869	0,5869	0,5817	0,5828	0,5869
	0,3353	0,2976		0,3500	0,3500	0,3641		0,2620	0,3872		0,3375	0,3375	0,3375	0,3375	0,3375
8	0,2189	0,2143		0,2078	0,1889	0,2170	- 	0,2163	0,2269		0,2250	0,2210	0,2249	0,2212	0,2247
Западная прибрежная часть	2,9065	2,9958	ая часть	1	1	3,1669	ожная прибрежная часть	2,3986	3,0767		2,9087	1		1	2,9044
ная прибр	5,17	5,07	Ого-восточная часть	5,62	5,63	5,65	ая прибре	4,14	5,27		5,11	5,06	5,10	5,08	5,10
Запад	0	0	Ŋ	0	0	0	Южи	0	0		0	0	0	0	0
	30	12		15	10	12		10	23		11				
	VIII 1962	VIII 1963		VIII 1961		VIII 1962	-	VIII 1963	IX 1963		29 VIII 1963				
	67	Сальянский рейд		94	95	84a		Взморье, в районе Сефид-Руд	Взморье, в районе Пехлеви	Взморье, в районе Ноушехр	1	2	ß	4	ũ

									Contraction of the local division of the loc		
Станция	Дата взятия Глубина, Горизонт, пробы	Глубина, м	Горизонт,	Cl'+ Br'	SO4"	HC0s'	Сумма анионов	Ca:	"Mg"	Na + K ^B uepe- cyere ha Na	Сумма ионов
				ILO ILO	Открытая часть моря	CTb MODЯ					
17	VIII 1961	310	0	152,562	1	3,641	1	17,849	686,09	1	1
78		800	0	152,844	64,234	3,667	220,745	17,831	61,400	141,514	441,490
62		700	0	154,254	1	3,641	1	18,238	62,576	1	1
80a	14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	800	0	154,254	1	3,663	1	18,014	61,993	1	1
81		450	0	154,254	1	3,423	1	17,465	63,794	1	1
82		80	0	154,254	64,019	3,582	221,855	18,179	62,544	141,132	443,710
83		40	0	154,254	64,267	3,623	222,144	17,695	62,297	142,152	444,288
92		240	0	153,972		3,504	1	16,916	63,794	1	1
93		34	0	153,972	63,386	3,443	220,801	18,398	64,616	137,787	441,602
80		763	0	154,536	63,524	3,535	221,595	17,979	61,680	141,936	443,190
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		750	153,972	63,083	3,451	220,506	18,119	61,812	140,575	441,012
89		780	0	153,972	63,407	3,464	220,843	17,700	62,034	141,109	441,686
			750	153,408	63,041	3,587	220,036	17,800	62,009	140,227	440,072
				An	Апшеронский район	й район					
57	VIII 1962	24	0	150,870	1	3,544	1	17,412	61,872	1	1
09		197	0	152,844	63,980	3,507	220,331	17,780	60,940	141,611	440,662
61		110	0	154,254	1	3,461	1	17,687	61,954	1	1
65	The strength	14	0	153 600		3 407		16 046	60 120	1 Stranger	

	419,786	417,862		1	+	457,638		340,582	432,936 .		416,694	ľ	1	l	415,940
	58,251 134,911	139,855		Í	I	145,823		112,616	142,034		143,239	l	1	1	142,862
	58,251	53,925		67,149	66,203	64,827	_	44,377	57,699		48,267	47,839	47,929	47,839	48,267
	16,731	15,155		17,465	17,465	18,169		13,298	19,735		16,841	16,841	16,841	16,841	16,841
P	209,893 16,731	208,931		1	ł	228,819		170,291	216,468		208,347	1	1	1	207,970
Западная прибрежная часть	3,586	3,584	ая часть	3,404	3,094	3,554		3,604	3,797		3,686	3,620	3,684	3,623	3,680
ная прибр	60,513	62,373	Юго-восточная часть	1	1	65,935	ouynun be	49,939	64,057		60,559	1	1	1	60,470
Запад	145,794 60,513	142,974	IOI	158,484	158,766	159,330	IOwn	116,748	148,614		144,102	142,692	143,820	143,256	143,820
	0	0		0	0	0		0	0		0	0	0	0	0
	30	12		15	10	12		10	23		11				
a A A	VIII 1962	VIII 1963		V111 1961		V111 1962	-	1- VIII 1963	a- IX 1963		VIII 1963				
	67	Сальянский рейд		94	95	84a		Взморье, в рай- оне Сефид- Руд	Взморье, в рай- оне Пехлеви	Взморье, в рай- оне Ноушехр	1	2	3	4	ũ

	Сумма ионов		100,00	100,00	100,00	8,08	100,00		100,00		100,01	66'66		99,98 100,00
	Na + K ^B nepe- cuere na Na		32,05	31,20	32,03	31,95	34,35		32,13 34,47		33,07	32,11		34,37 34,35
	Mg		13,91	14,02	13,92	14,04	11,60		13,87 12,90		13,03	13,32		11,58
	Ca.		4,04	3,98	4,05	4,01	4,05		4,00 3,63		3,91	4,56		4,04 4,05
я (% экв.)	нсо ₃ ′		0,83	0,78	0,80	0,78	0,88	Tb	0,85 0,86	р	1,06	0,88		0,88 0,88
ого Каспи	so,"	сть моря	14,55	14,40	14,33	14,36	14,54	ежная час	14,42 14,93	жная част	14,66	14,79		14,53 14,54
вод Южн	Cl'+ Br'	Открытая часть моря	34,62 34,76	34,72	34,87	34,86	34,58	Западная прибрежная часть		Южная прибрежная часть				
Ионный состав вод Южного Каспия (% экв.)	Горизонт,	Q	000	00	00	000	00	Запад		Южи	0	0		00
Нон	Глубина, м		800	0 4 8	763	780	12		30		10	23		11
	Дата жаятия пробы		VIII 1961		VIII 1962				VIII 1962 VIII 1963		VIII 1963	IX 1963		VIII 1963
	Станция		78	88	8	89	84a		67 Сальянский рейд		Взморье, в районе	Сефид-Руд Взморье, в районе Пехлеви	Взморье, в районе	noymexp 5

Сумма ионов	888888888888888	100,00	99,99 99,99 100,00
Na + K в цере- счете на Na	24,87 24,50 24,50 24,50 24,77 24,77 24,77	26,94	25,70 25,09 26,43 26,41
mg	83333333333333 83333333333333333333333	5,15	5,22 5,38 4,71 4,71
- Ca	0000000000 22283252226	2,39	2,58 3,00 2,71 2,71
нсо"		ть 1,76 1,72	b 2,13 1,76 1,80 1,81
so,"	сть моря 23,57 23,25 23,23 23,25 24,25 25	Западная прибрежная часть 0 41,55 23,36 0 40,67 24,03	Южная прибрежная часть 40,75 23,61 40,89 23,87 41,00 23,35
C1 '+ Br'	Открытая часть моря 41,72 23,57 41,69 23,31 41,69 23,31 41,69 23,33 41,77 23,32 41,77 23,32 41,77 23,32 41,77 23,32 41,77 23,32 41,77 23,33	ная прибр 41,55 40,67	ая прибре 40,75 40,89 41,00 41,00
Горизонт, м	OT 750 750 750	Запад 0 0	Южн 0 0 0 0
Глубина, м	800 80 40 763 780 12	13	10 23 11
Дата взятия пробы	VIII 1961	VIII 1962 VIII 1963	VIII 1963 IX 1963 VIII 1963
Станция	78 82 83 83 84 84 84	67 Сальянский рейд	Взморье, в районе Сефид-Руд Взморье, в районе Пехлеви Взморье, в районе Ноушехр 5

рушении последнего кальций выпадает в осадок в виде CaCO₃ и таким образом абсолютное количество его в воде уменьшается. Этот процесс широко распространен во всей восточной части Каспийского моря, особенно интенсивен он в южной его части.

Наблюдается определенная тенденция к накоплению магния в южной части моря. В Среднем Каспии содержание магния составляет 0,7447 г/кг, а в Южном — в среднем 0,7519 г/кг. Наибольшие величины магния найдены в юго-восточном районе Южного Каспия. Здесь на станциях 92—95 и 84а содержание магния значительно выше, чем во всем море; оно колеблется от 0,7757 до 0,8165 г/кг, среднее из 5 проб составляет 0,7942 г/кг. Магний по сравнению с кальцием обладает большой растворимостью и, очевидно, не участвует в процессе осаждения. Содержание магния, выраженное в % экв., на станции 93, расположенной в этом районе, наивысшее, 14,63.

Следовательно, воды юго-восточного района Южного Каспия по режиму щелочно-земельной группы солевого состава отличаются от вод исследованной нами открытой части Каспийского моря.

Наши наблюдения относятся к жаркому периоду года (август, 1961 г.), когда происходит интенсивное испарение с поверхности воды и, как результат этого, усиленное осаждение карбоната кальция. Поэтому представляет интерес исследование солевого состава воды этого специфического в отношении физикогеографических условий района в холодный сезон года.

Анализ абсолютного содержания отдельных солеобразующих компонентов исследованной нами открытой части моря показал, что колебания их небольшие, что свидетельствует о сравнительной однородности солевого состава воды. Но в то же время выявляется как определенная закономерность постепенное возрастание концентрации солей с севера на юг. Об этом можно судить и по содержанию определяемых элементов и по их сумме. Правда, разница в концентрациях ионов в Среднем и Южном Каспии незначительна, примерно 0,6%. Очевидно, южная часть Каспийского моря, представляющая собой конечную область водоема, не охвачена в полной мере водообменом и в ней, как в полузамкнутой чаше, могут накапливаться соли.

Постоянство солевого состава вод характеризуется не только абсолютными количествами, но в еще большей степени ионными соотношениями или коэффициентами. Обычно для морской воды берутся отношения элементов к доминирующему в ней хлориону. Относительные величины изменяются под воздействием различных факторов и прежде всего при поступлении новых водных масс, в частности, речного стока. На значение коэффициентов при исследовании солевого состава вод указывал еще Лебединцев (1901): «Коэффициенты характеризуют химический состав солевой массы моря, а также изменения этого состава под

влиянием химических факторов. Если вода разжижается лишь дистиллированной водой, то при уменьшении удельного веса и солености коэффициенты остаются постоянными».

Относительные величины содержания солеобразующих ионов к содержанию хлора рассмотрены нами по районам моря для Среднего и Южного Каспия (табл. 74). Таблица 74

Относительные величины содержания солеобразующих компонентов

Район моря	$\frac{Alk}{Cl}$	$\frac{SO_4}{Cl}$	Ca Cl	Mg Cl
Средни	й Каспий			
Открытая часть	0,6588	0,5662	0,0650	0,1369
Район, пограничный с Северным Кас- пием	0,6895 0,6864 0,6752	0,5616 0,5560 0,5654	0,0650 0,0648 0,0662	0,1378 0,1380 0,1372
Южны	й Каспий			
Открытая часть	0,6657 0,7002 0,5948	0,5600 0,5766 0,5605	0,0654 0,0618 0,0629	0,1390 0,1318 0,1426
взморье у Сефид-Руд и район Пехлеви у порта Ноушехр	0,7955 0,7188	0,5816 0,5693	0,0684 0,0663	0,1299 0,1147

Отношения содержания ионов к хлору в отдельных районах Среднего Каспия очень близки. Несколько увеличен щелочнохлорный коэффициент в районах, подверженных воздействию речного стока (западная прибрежная часть и район пограничный с Северным Каспием). В небольших районах Южного Каспия отдельные гидрохимические компоненты отклоняются от компонентов открытой части моря, так как находятся под влиянием факторов местного значения. Воды южного побережья, находящиеся под влиянием стока иранских рек, смешанные с неустановившимся солевым составом.

Воды открытой части Среднего и Южного Каспия очень близки по своему ионному составу.

Солевой состав воды Каспийского моря отличен от солевого состава вод других морей и океанов, что особенно видно из сравнения относительных величин компонентов и их сумм (табл. 75).

Вода Каспийского моря отличается от океанической воды и вод открытых морей высоким содержанием удельно тяжелых сернокислых и углекислых солей щелочно-земельных катионов (Ca" и Мс"). Каспийские воды по своему составу близки к водам тоже изолированного от океана Аральского моря, причем в последнем разница в ионном составе вод по сравнению с океаном выражена в еще большей степени.

Таблица 75

Относительные величины содержания солеобразующих компонентов в воде океана и морей

Отношение содержания	Океан ¹		M	lope	
иона к содер- жанию хлора	Океан	Черное ²	Азовское ³	Каспийское4	Аральское
SO ₄ Cl	0,1396	0,1408	0,1484	0,5631	0,8940
HCO ₃ Cl	0,00738	0,0194	0,0274	0,0398	0,0572
Ca Cl	0,0216	0,0247	0,0277	0,0652	0,1372
Mg Cl	0,0669	0,0681	0,0683	0,1380	
Σ Cl	1,815	1,819	1,856	2,386	2,597

¹ По Свердрупу, Джонсону и Флемингу.

По Б. А. Скопинцеву (1958).
 По А. П. Цуриковой (1960).
 По А. С. Пахомовой (1964).
 По Л. К. Блинову (1956).

Солевой состав вод Северного Каспия

Солевой состав вод Северного Каспия формируется под воздействием нескольких факторов. Основным из них является сток Волги, влияние которого распространяется на всю толщу вод этой мелководной части моря. В восточной части оказывают влияние уральские воды, которые по содержанию некоторых компонентов отличаются от волжских. С юга приходят воды из Среднего Каспия с уже установившимся ионным составом. В северном Каспии происходит смешение разных водных масс и в зависимости от преобладающего действия того или иного фактора образуются воды разного солевого состава — от опресненных вод с хлорностью меньше 1‰ до близких к истинным каспийским водам.

Для исследования солевого состава вод в Северном Каспии взяты поверхностные пробы воды на 11 станциях, равномерно расположенных по акватории моря (рис. 38). Результаты анализа (табл. 76-79) показали большие колебания ионного состава воды в разных районах. Установленный Лебединцевым

следнем разница в ионном составе вод по сравнению с океаном выражена в еще большей степени.

Таблица 75

Относительные величины содержания солеобразующих компонентов в воде океана и морей

Отношение содержания	Океан		M	lope	
иона к содер- жанию хлора	Okean-	Черное ²	Азовское ³	Каспийское*	Аральское ⁵
$\frac{SO_4}{Cl}$	0,1396	0,1408	0,1484	0,5631	0,8940
HCO ₃ Cl	0,00738	0,0194	0,0274	0,0398	0,0572
Ca Cl	0,0216	0,0247	0,0277	0,0652	0,1372
$\frac{Mg}{Cl}$	0,0669	0,0681	0,0683	0,1380	-
$\frac{\Sigma}{Cl}$	1,815	1,819	1,856	2,386	2,597

По Свердрупу, Джонсону и Флемингу.
 По Б. А. Скопинцеву (1958).
 По А. П. Цуриковой (1960).
 По А. С. Пахомовой (1964).
 По Л. К. Блинову (1956).

Солевой состав вод Северного Каспия

Солевой состав вод Северного Каспия формируется под воздействием нескольких факторов. Основным из них является сток Волги, влияние которого распространяется на всю толщу вод этой мелководной части моря. В восточной части оказывают влияние уральские воды, которые по содержанию некоторых компонентов отличаются от волжских. С юга приходят воды из Среднего Каспия с уже установившимся ионным составом. В северном Каспии происходит смешение разных водных масс и в зависимости от преобладающего действия того или иного фактора образуются воды разного солевого состава — от опресненных вод с хлорностью меньше 1‰ до близких к истинным каспийским водам.

Для исследования солевого состава вод в Северном Каспии взяты поверхностные пробы воды на 11 станциях, равномерно расположенных по акватории моря (рис. 38). Результаты анализа (табл. 76-79) показали большие колебания ионного состава воды в разных районах. Установленный Лебединцевым

Станция	Cl'+ Br'	SO4"	НСО"′	Ca"	Mgʻʻ	Na + K в пере- счете на Na	Сумма нонов
6 11 17 15a 18a 22 1 6a 51 14 10 12a	0,47 4,59 2,83 4,51 0,25 4,41 2,23 3,59 3,25 2,23 3,34 0,09	$\begin{array}{c} 0,2944\\ 3,0618\\ 1,6684\\ 2,5936\\ 0,1076\\ 2,4790\\ 1,2575\\ 2,2509\\ 2,0026\\ 1,3154\\ 1,9970\\ 0,0890 \end{array}$	0,1244 0,2137 0,1924 0,2120 0,0979 0,2126 0,1774 0,2118 0,1920 0,1874 0,1974 0,1433	0,0646 0,3116 0,2178 0,3041 0,0383 0,2948 0,1747 0,2587 0,2383 0,1795 0,2347 0,0529	0,0724 0,6386 0,3912 0,6274 0,0180 0,7081 0,2943 0,4949 0,4574 0,3090 0,4619 0,0212	0,2816 2,9581 1,7169 2,7112 0,1726 2,4496 1,3582 2,2532 2,0005 1,3563 2,0539 0,0543	$\begin{array}{c} 1,3074\\ 11,7738\\ 7,0167\\ 10,9583\\ 0,6844\\ 10,5541\\ 5,4921\\ 9,0595\\ 8,1408\\ 5,5776\\ 8,2849\\ 0,4507\end{array}$

Солевой состав вод Северного Каспия на поверхности (мг-экв/кг)

Станция (Cl'+ Br'	SO4"	HCO3'	Сумма анионов	Ca	Mg	Na'+ K'	Сумма ионов
17 15a 18a 22 1	13,254 129,438 79,806 127,182 7,050 124,362 62,886 101,238 91,650 62,886 94,188 2,538	6,130 63,746 34,736 53,999 2,240 51,613 26,181 46,864 41,694 27,387 41,578 1,853	2,038 3,501 3,152 3,473 1,604 3,483 2,906 3,469 3,145 3,070 3,233 2,348	$\begin{array}{c} 21,422\\ 196,686\\ 117,694\\ 184,654\\ 10,894\\ 179,458\\ 91,973\\ 151,571\\ 136,489\\ 93,343\\ 138,999\\ 6,739\end{array}$	3,226 15,548 10,868 15,174 1,909 14,711 8,720 12,907 11,892 8,959 11,711 2,640	$\begin{array}{c} 5,953\\ 52,520\\ 32,176\\ 51,597\\ 1,479\\ 58,238\\ 24,200\\ 40,697\\ 37,614\\ 25,414\\ 37,985\\ 1,740\\ \end{array}$	$\begin{array}{c} 12,243\\ 128,618\\ 74,650\\ 117,883\\ 7,506\\ 106,509\\ 59,053\\ 97,967\\ 86,983\\ 58,970\\ 89,303\\ 2,359\end{array}$	42,844 393,372 235,388 369,308 21,788 358,916 183,946 303,142 272,978 186,686 277,998 13,478

хлорный коэффициент для нормальной каспийской воды (2,386) неприменим к опресненной воде. Близкий к нему хлорный коэффициент 2,393 получен только в пробе со станции 22, расположенной в центральной части Северного Каспия, и с некоторым допущением в пробе со станции 15а в юго-западном районе (табл. 80).

Преобладающим фактором формирования солевого состава вод в этих районах, по-видимому, будет приток соленых вод из Среднего Каспия. В то же время повышенные относительные величины солеобразующих компонентов указывают и на опресняющее действие речного стока.

Станция	Cl'+Br'	SO₄″	HCO ₃ ′	Ca"	Mg"	Na* + K*	Сумма ионов
6	30.94	14,31	4,76	7,53	13,89	28,58	100.0
11	32,90	16,20	0,89	3,95	13,35	32,70	99,99
17	33,90	14,76	1,34	4,62	13,67	31,71	100,00
15a	34,44	14,62	0,94	4,11	13,97 -	31,92	100,00
18a	32,36	10,28	7,36	8,76	6,79	34,45	100,00
22	34,65	14,38	0,97	4,10	16,23	29,68	100,0
1	34,19	14,23	1,58	4,74	13,16	32,10	100,00
6a	33,40	15,46	1,14	4,26	13,42	32,32	100,00
51	33,57	15,27	1,15	4,36	13,78	31,86	99,99
14	33,68	14,67	1,64	4,80	13,61	31,59	99,99
10	33,88	14,96	1,16	4,21	13,66	32,12	99,99
12a	18,83	13,75	17,42	19,59	12,91	17,50	100,00

Солевой состав вод Северного Каспия на поверхности (в процентах от суммы ионов)

Станция	Cl' + Br'	SO4"	HCO ₃ '	Ca"	Mg"	Na' + K'	Сумма ионов
6	35,95	22,52	9,52	4,94	5,54	21,54	100,01
11	38,98	26,00	1,82	2,65	5,42	25,12	99,99
17	40,33	23,78	2,74	3,10	5,58	24,47	100,00
15a	41,16	23,67	1,93	2,78	5,72	24,74	100,00
18a	36,53	15,72	14,30	5,60	2,63	25,22	100,00
22	41,78	23,49	2,01	2,79	6,71	23,21	99,99
1	40,60	22,90	3,23	3,18	5,36	24,73	100,00
6a	39,63	24,84	2,34	2,86	5,46	24.87	100,00
51	39,92	24,60	2,36	2,93	5,62	24,57	100,00
14	39,98	23,58	3,36	3,22	5,54	24,32	100,00
10	40,31	24,10	2,38	2,83	5,58	24,79	99,99
12a	19,97	19.75	31,79	11.74	4.70	12.05	100,00

В предустьевом пространстве Волги (станции 6, 18a, 12a), как показывает анализ, солевой состав вод с хлорностью меньше 0,5‰ близок к солевому составу речной воды. Минерализация воды в прибрежной полосе против дельты Волги не превышает 1 г/кг.

Солевой состав вод к северу от о. Кулалы (станции 10, 17, 14) в районе водообмена между западной и восточной частями Северного Каспия более или менее одинаков (табл. 81), что свидетельствует о стабильности условий формирования ионного состава вод в данном районе моря. Это район непрерывного водообмена и интенсивного перемешивания вод разного состава восточных, западных и приходящих сюда основных среднекаспийских. В результате их смешения образуется достаточно однородная водная масса.

	Alk	SO,	Ca	Mg	Е ионов
Станция	CI	SO ₄ Cl	Ca	CI	Cl
6	4,3404	0,6264	0,1374	0,1540	2,74
11	0,7697	0,6671	0,0679	0,1391	2,56
17	1,1201	0,5895	0,0770	0,1382	2,48
15a 18a	0,7769 6,4200	0,5751 0,4304	0,0674	0,1391	2,43
22	0,4200	0,4304	0,0668	0,0720 0,1606	2,74
1	1,3090	0,5639	0,0008	0,1320	$2,39 \\ 2,46$
6a	0,9733	0,6270	0,0721	0,1379	2,52
51	0,9742	0,6162	0,0733	0,1407	2,55
14	1,3830	0,5899	0.0805	0,1386	2,50
10	0,9746	0,5979	0,0703	0,1383	2,48
12a	26,0888	0,9889	0,5877	0,2356	5,01

Ионный состав вод в районе водообмена между западной и восточной частями моря

Станция	CI	Сумма ионов (Σ)	<u> </u>	Alk	SO4 Cl	Ca Cl	Mg Cl
10	3,34	8,2849	2,48	0,9746	0,5979	0,0703	0,1389
17	2,83	7,0167	2,48	1,1201	0,5895	0,0770	0,1382
14	2,23	5,5776	2,50	1,3830	0,5899	0,0805	0,1386

В восточной части Северного Каспия исследовано три пробы воды (станции 1, 6а, 51). Одна из них (станция 1) характеризует воды, находящиеся под непосредственным влиянием уральского стока (северо-восточного района). Две пробы взяты в Уральской бороздине (станции 6а и 51). Оказалось, что относительные величины компонентов повышены так же, как и в северо-западной части Северного Каспия. Хлорность вод в Уральской бороздине увеличена в связи с удалением от источника опреснения. По солевому составу — это смешанные воды, которые формируются под действием как речных, так и истинных морских вод, поступающих в восточную часть моря через Мангышлакский залив. Воды уральской бороздины пересыщены карбонатами, на что указывает хемогенная садка их на дне, особенно в глубинных затишных участках бороздины; дно в них покрыто мощным слоем пелитоморфного карбоната (Пахомова, 1956б).

Выше было указано, что для опресненных вод Северного Каспия выведена своя зависимость между соленостью и хлором с учетом пресноводной составляющей (речного стока): S ==2,36Cl+0,14. В работе Мусиной и Микей (1941) указывается, что к каспийской воде, опресненной уральским стоком, эта формула непременима, и для этой воды ими установлена иная связь между соленостью и хлором. Величины хлорных коэффициентов для уральских вод значительно выше, чем для вод Северного Каспия, при равном содержании хлора. Причина этого, по мнению исследователей, кроется в различии солевого состава уральских и волжских вод (значительно повышенное содержание сульфатов в уральской воде по сравнению с волжской). За неимением данных полного анализа воды р. Урал этот вывод сделан на основании анализа поверхностных вод в районах уральского и волжского опреснения.

Химический состав вод рек Волги и Урала рассмотрен в работе Алекина (1948 б). Из приведенных им данных (табл. 82 и 83) видно, что воды Урала обогащены хлоридами натрия, так

Таблица 82

Месяц	C1′	SO4"	CO3″	Ca**	Mg"	Na+ K	Сумма ионов
Ţ	20,1	85,6	101,7	72,7	16,1	23,3	319,5
	19,2 20,6	91,4 96,3	104,6 111,1	76,1 81,0	15,9 17,2	22,6 19,5	329,8 345,7
IV	23,9	83,9	143.5	69,7	12,8	16,2	350,0
V	8,5	36,2	77,0	37,7	6,3	10,8	176,5
VI	5,6	29,7	64,4	33,1	5,6	8,9	147,3
VII VIII	6,9 10,9	40,2 85,0	55,7 65,8	38,4 58,5	6,7 10,2	8,2 12,0	156,1 242,4
IX	13,4	54,0	80,2	54,7	10,2	14,5	227,2
Х	19,6	74,0	83.8	62,9	12,8	18,2	271,3
XI	24,2	85,0	90,3	67,8	13,9	22,2	303,4
XII	20,0	70,2	88,7	60,2	13,2	18,7	271,0
Средняя годовая	16,1	69,3	88,9	59,3	11,8	16,3	261,7

Средние величины содержания главнейших ионов (мг/л) в воде Волги у Астрахани. 1901—1911 и 1938 гг.

как река дренирует районы бывших трансгрессий Каспийского моря. Что касается сульфатов и карбонатов, то их содержание в Урале и Волге выражается величинами одного порядка и даже нередко наблюдается повышенное количество сульфатов не в уральской, а в волжской воде.

Таблица 83 Химический сток воды р. Урала (мг/л)								
Пункт	Дата взятия пробы	C1′	SO _s "	HCO ₃ '	Ca**	Mg**	K + Na	Сумма ионов
Пос. Кушумский	13 111 1941 28 111 17 IV 1939	$104,4 \\ 43,0 \\ 33,6$	81,4 57,5 14,2	245,9 191,6 112,4	90,0 64,3 44,6	28,8 15,7 8,7	45,2 47,3 3,5	595,7 449,6 217,0
Пос. Тополинский, г. Гурьев	30 III 1941 11 V 1934 11 VIII 11 III 1935	113,1 36,9 90,2 178,2	79,8 30,9 67,3 100,9	238,4 133,0 223,9 328,8	74,3 36,4 58,6 90,3	27,5 ,9,2 19,0 31,6	69,8 34,5 74,4 136,2	602,9 280,9 533,4 866,0
Среднее у г. Гурьева	-	101,8	66,4	228,6	61,8	19,9	81,7	527

По полученным в 1962 г. аналитическим данным высокого содержания сульфатов и в водах восточной части Северного Каспия не обнаружено. Влияние уральского стока сказывается на увеличении в воде хлоридов натрия. Наблюдается близкая сходимость всех остальных компонентов солевого состава всего Северного Каспия. Колебания в содержании солеобразующих компонентов в отдельных районах объясняются преимущественно величиной пресного стока и отражаются прежде всего на соотно-

шениях щелочности и хлора $\left(\frac{Alk}{Cl}\right)$.

Для сравнения с прежними данными по солевому составу вод приведены результаты исследований 1938 г. (табл. 84). Для бо́льшей наглядности характерные анализы приведены в табл. 85.

Как видно из табл. 85 в юго-западной части Северного Каспия как абсолютные, так и относительные количества основных компонентов солевого состава воды выражены величинами од-

ного порядка. Некоторое увеличение коэффициентов $\frac{Alk}{Cl}$ и $\frac{SO_4}{Cl}$

в настоящее время можно объяснить более северным расположением станций, где взяты пробы на анализ в 1962 г. Пробы воды с близких по местоположению станций 15а (1962 г.) и 2 (1938 г.) имеют очень сходный солевой состав.

В восточной части явно повышенное значение щелочно-хлорного коэффициента на станциях 51 и 6 в Уральской бороздине является результатом большой насыщенности вод карбонатами (высокий щелочной резерв). Увеличение сульфатов в абсолютном и относительном их выражении, по данным 1962 г., не обнаружено. Повышенный хлорный коэффициент вод восточной части

Район	Северный Каспий (северо-западный район)								
Станция	22	512	2	5	3	8			
Дата	3 V III	9 VIII	5 VIII	5 VIII	5 VIII	5 VIII			
Горизонт взятия пробы, м	8,5	0	0	0	дно	дно			
						• • •			
Na	0,6330	0,9433	2,6925	2,7850	3,0538	3,1200			
K.	0,0212	0,0342	0,0891	0,0809	0,0974	0,0995			
Ca''	0,1081	0,1340	0,3170	0,3177	0,3450	0,3456			
Mg"	0,1651	0,2412	0,6409	0,6460	0,7125	0,7254			
Cl'	1,1130	1,6420	4,6470	4,7370	5,2120	5,3010			
Br'	0,0009	0,0012	0,0068	0,0072	0,0068	0,0068			
SO4"	0,6475	0,9409	2,5780	2,6300	2,8764	2,9390			
CO3"	0,0636	0,0647	0,0998	0,0976	0,1026	0,1016			
Сумма S	2,7524	4,0015	11,0711	11,3014	12,4065	12,6389			
Щелочность А мг- экв/л	2,1190	2,1570	3,3270	3,2530	3,4200	3,3850			
Плотный остаток при $t = 480^{\circ} (S_{480})$.	2,7560	4,0030	11,1050	11,3290	12,4220	12,6550			
S_{480}/S	1,0012	1,0003	1,0030	1,0024	1,0013	1,0012			
Na/Cl	0,5688	0,5745	0,5796	0,5879	0,5859	0,5791			
K/CI	0,0190	0,0208	0,0192	0,0171	0,0187	0,0188			
Ca/Cl	0,0974	0,0802	0,0682	0,0671	0,0662	0,0652			
Mg/Cl	0,1488	0,1471	0,1379	0,1364	0,1367	0,1368			
Br/Cl	0,00081	0,00073	0,00146	0,00152	0,00130	0,00128			
SO4/C1	0,5818	0,5737	0,5547	0,5552	0,5519	0,5544			
CO ₃ /Cl	0,0573	0,0395	0,0215	0,0206	0,0197	0,0192			
A/Cl	1,9040	1,3140	0,7160	0,6870	0,6680	0,6390			

	Среди		Северный Каспий (район влияния р. Урала)			
6 ·	50	19	18	среднее для района	46	467
13 VIII	22 VIII	15 VIII	15 VIII		4 XI	4 XI
0	дно	0	0		0	дно
3,1101	3,1426	3,1750	3,2516	3,1698	2,3077	3,0763
0,1046	0,1020	0,1046	0,1061	0,1043	0,0514	0,0960
0,3614	0,3647	0,3629	0,3654	0,3636	0,2071	0,3529
0,7239	0,7279	0,7376	0,7343	0,7309	0,4021	0,7230
5,3470	5,3580	5,4070	5,5170	5,4070	2,9280	5,2460
0,0064	0,0068	0,0068	0,0072	0,0068	0,0040	0,0058
2,9725	2,9793	3,0265	3,0720	3,0125	2,9214	2,9900
0,1030	0,1057	0,1027	0,0991	0,1026	0,0560	0,0889
12,7289	12,7870	12,9231	13,1527	12,8975	8,8777	12,5789
3,4340	3,4420	3,4240	3,3040	3,4010	1,8680	2,9620
12,7430	12,792	12,9300	13,1640	12,9080	8,8780	12,6010
1,0011	1,0004	1,0005	1,0008	1,0007	1,0000	1,0017
0,5818	0,5865	0,5872	0,5894	0,5862	0,7882	0,5864
0,01956	0,0190	0,0181	0,0192	0,0189	0,0176	0,0183
0,0676	0,0681	0,0672	0,0662	0,0673	0,0707	0,0672
0,1354	0,1359	0,1364	0,1331	0,1352	0,1373	0,1378
0,00120	0,00127	0,00126	0,00131	0,00126	0,00137	0,0011
0,5559	0,5561	0,5597	0,5568	0,5571	0,9978	0,5700
0,0193	0,0197	0,0190	0,0180	0,0190	0,0179	0,0169
0,6420	0,6420	0,6330	0,5990	0,6290	0,6380	0,5650

Район, год	Станция	CI %。	SO4 r/kr	Сумма ионов Σг/кг	Alk Cl	SO4 Cl	Ca Cl	Mg Cl	E Cl
Юго-западная часть, 1962	22 15a 11	4 51	2 5936	10,5541 10,9583 11,7738	0 7769	0 5751	0 0674	0 1391	2,3 2,4 2,5
Юго-западная часть, 1938	2 5	4,65 4,74	$2,5780 \\ 2,6300$	11,0711 11,3014	0,7160 0,6870	0,5547 0,5552	0,0682 0,0671	0,1379 0,1364	2,3 2,3
Уральская бороздина, 1962	51 6	3,25 3,59	2,0026 2,2509	8,1408 9,0595	0,9742 0,9733	0,6162 0,6270	0,0733 0,0721	0,1407 0,1379	2,5 2,5
Уральская бороздина, 1938	46	2,93	2,9214	8,8777	0,6380	0,9978	0,0707	0,1373	3,04

моря по сравнению с водами юго-западного района, обнаруженный исследованиями 1938 г., наблюдается и сейчас. Это, очевидно, объясняется влиянием уральских вод, обладающих большей и несколько иной минерализацией, чем волжские воды (Алекин, 1948б).

Изменение солевого состава вод в последние годы

Для суждения об изменении солевого состава вод во времени сравнивались данные за последние годы с данными для вод Южного Каспия, по Бруевичу (1937), и для вод Среднего Каспия, по Лебединцеву (1901). Как видно из табл. 86, содержание большей части компонентов (хлорности, кальция и магния) медленно, но неизменно растет, увеличивается минерализация вод. Это увеличение особенно заметно в южной части моря. Сумма ионов изменяется по годам следующим образом:

> 1897 г. — 12,8346 г/кг 1933 г. — 12,9286 "Рост 0,730/0 Всего 1,970/0 1961 г. — 13,0881 "Рост 1,240/0 Всего 1,970/0

Минерализация воды открытой части Каспийского моря возросла почти на 2%. Наибольший рост ее 1,24%, приходится на время с 1933 до 1961 гг., т. е. на период наиболее интенсивного снижения уровня.

Соотношения солеобразующих компонентов для вод открытой части Среднего и Южного Каспия почти не изменились во времени, что свидетельствует о постоянстве солевого состава. Некоторые отклонения в абсолютном и относительном содержании компонентов, в частности увеличение магния, отмечены в юго-

Таблица 86 оока) и в	CI	0,1364	0,1365	0,1369	0,1378
crl	Ca	0,0633	0,0646	0,0650	0,0657
кг (перва	CI SO4	12,8346 0,6923 0,5707 00,01	0,5628	0,5662	0,5603
пия в г/	Alk CI	0,6923	12,9286 0,6750 0,5628 00,00	13,0038 0,6588 0,5662 00,00	13,0865 0,6657 00,00
кного Кас грока)	Сумма ионов	12,8346 100,01	12,9286 100,00	13,0038 100,00	13,0865
звого состава вод Среднего и Южного процентах от суммы солей (вторая строка)	Na· + K	3,2175 25,07	3,2665 25,26	3,2383 24,90	3,2491 24,86
д Средне	""BW	0,7238 5,64	0,7311 5,65	0,3525 0,7447 2,71 5,72	0,7540 5,73
TABA BO	Ca"	0,3360 2,62	0,3454 2,67	0,3525 2,71	0,3585
ого сост	HCO3'	0,2217 1,73	3,0111 0,2172 23,29 1,69	3,0112 0,2168 23,16 1,67	3,0576 0,2169 23,29 1,66
в солево	so,"	5,3070 3,0286 0,2217 0,3360 0,7238 1,35 23,60 1,73 2,62 5,64	64	3,0112 0,210 23,16 1,67	3, 0576 23, 29
мпоненто	Cl' + Br'	5,3070 41,35	5,3573 41,44	5,44 41,83	5,46 41,73
Содержание основных компонентов солевого состава вод Среднего и Южного Каспия в г/кг (первая процентах от суммы солей (вторая строка)		Средний Каспий, 1893, 1897 (по Лебединце- ву)	Южный Каспий, 1933 (по Бруевичу)	Средний Каспий, 1961— 62 (по Пахомовой)	Южный Каспий, 1961— 62 (по Пахомовой)