Она выделила несколько периодов подъема и падения уровня моря:

```
      1912—1915 гг. подъем
      уровня на 0,2 м

      1915—1925 "падение " " 0,6 "

      1925—1929 "подъем " " 0,6 "

      1929—1941 "падение " " 1,9 "

      1941—1962 " " " " " 0,7 "
```

Всего за 50 лет уровень упал на 2,4 м

Для каждого периода в связи с подъемом или падением уровня она определила объем моря и рассчитала соленость. Кроме того, она вычислила также количество соли, выносимое ежегодно в залив Кара-Богаз-Гол, и определила соленость в зависимости от выноса (табл. 94, рис. 41).

Таблица 94 Соленость и определяющие ее факторы в различные периоды

	г сток км ³	выне-	вне-	Оста запаса		в зави- соле- са, 0/00	моря, см	Объ мој		в зави-	7ющая 0/00
Год	Суммарный за период,	Количество 1 сенной соли, кг.10-8	Количество и сенной соли, кг.10-8	кг.10—11	%	Соленость в с симости от со вого баланса,	Уровень мо	KM ³	%	Соленость симости от ня, 0/00	Результирующая соленость, °/о
1929-41	17,7 79,0 26,6 348,7 498,1 723,2	34 528 45 323 64 741	288 1 259 4 316 5 665 8 093 11 804	10 072 10 065 10 044 10 034 10 017 9 991	99,91 99,70 99,61	12,84 12,81 12,80			100 99,77 100 99,29	12,84 12,87 12,84 12,92	12,85 12,84 12,84 12,82 12,85 12,85

Как видно из табл. 94 и рис. 41, соленость вод Среднего и Южного Каспия за это время практически почти не изменилась; колебания ее в разные периоды незначительны, 12,82—12,85‰. Для последних лет она составляет 12,86‰, т. е. столько же, сколько установлено нами экспериментальным путем.

Глава IV

ГАЗОВЫЙ РЕЖИМ СРЕДНЕГО И ЮЖНОГО КАСПИЯ А. РАСТВОРЕННЫЙ КИСЛОРОД

Падение уровня Каспийского моря за последние три десятилетия не могло не отразиться на газовом режиме бассейна и прежде всего на содержании и распределении растворенного кислорода. Для определения влияния этого нового фактора необходимо было сравнить величины кислорода, активной реакции воды (рН) и углекислого газа в разные периоды с начала гидрохимических исследований в Каспийском море. В таком плане и проводилась настоящая работа.

Режим кислорода в Среднем Каспии

Распределение кислорода зимой в Среднем Каспии в основном определяется температурным режимом, влияние которого прослеживается четко, благодаря меридиональной протяженности моря.

В Северном Каспии зимой происходит интенсивное охлаждение всей толщи воды, обусловленное вертикальной циркуляцией, быстро достигающей дна при малых глубинах. Образование льда и связанное с этим увеличение солености и плотности воды вызывает сползание тяжелых слоев воды по склону в глубинные части Среднего Каспия, обогащая их кислородом и улучшая таким образом вентиляцию придонных слоев моря.

Таблица 95 Среднее содержание кислорода зимой. 1958—1962 гг.

	7			Pas	врезы					
Горизонт, м		1	I	I	IA	1	V		Сред	нее
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
0 10 25 50 75 100 150 200 300 400 500 600 750	8,03 8,27 8,50	95 96 102	7,83 8,03 7,82 7,60 7,66	93 95 94 92 92 —	7,31 7,53 7,38 7,09 6,80 6,44 4,87 4,32 3,81 3,58 3,59 3,66 3,61	92 95 91 88 86 80 61 53 47 44 42 42 44	7,64 7,65 7,50 7,32 7,05 7,21 —	97 97 95 93 90 90 —	7,70 7,87 7,80 7,34 7,17 6,82 4,87 4,32 3,81 3,58 3,50 3,59 3,66 3,61	94 96 96 91 89 85 61 53 47 44 42 44

В Среднем Каспии наблюдения проводились на пяти широтных разрезах (I—V). Правда, в зимнее время работы на северном разрезе о. Чечень — п-ов Мангышлак (I) отсутствовали в связи с льдообразованием. Поэтому характеристика режима кислорода в северной части Среднего Каспия приводится по данным одной зимней съемки на этом разрезе, специально организованной в феврале 1962 г. Указанный разрез (глубины до 25 м) характеризует зону, пограничную между Северным и Средним Каспием. На поверхности максимальное содержание кислорода составляет 8,22 мл/л, минимальное — 7,27 мл/л, среднее — 8,03 мл/л (табл. 95) и соответственно в процентах насыщения —

99,84 и 95%. В придонном слое содержание кислорода больше: максимальное — 8,80 мл/л; минимальное — 8,22 мл/л; среднее — 8,50 мл/л или соответственно — 106, 99 и 102% насыщения. Некоторое увеличение кислорода в придонном слое обусловлено опусканием воды, насыщенной кислородом при охлаждении моря и процессах льдообразования. Содержание кислорода по горизонтам мало различается — пределы колебаний абсолютного количества его меньше 1 мл/л, что объясняется полной вентиляцией водной толщи до дна при малых глубинах в этом районе.

Разрез Махачкала—мыс Сагындык (II), тоже мелководный, характеризует северный склон Средне-каспийской впадины. Глубины в этом районе не превышают 100 м. Колебания кислорода на поверхности составляют 8,95—7,16 мл/л при среднем значении 7,83 мл/л, или соответственно 97—87 и 93% насыщения. Изменения по горизонтам небольшие из-за сравнительно

малых глубин и интенсивного перемешивания.

В глубоководной части Среднего Каспия работы в зимнее время производились на разрезе Дивичи — бухта Кендырли (IV), где на поверхности содержание кислорода колеблется в пределах 7,76—6,73 мл/л при среднем значении 7,31 мл/л, или 99—85 и 92% насыщения. На следующем горизонте, 10 м, отмечено несколько повышенное содержание кислорода (в среднем 7,53 мл/л или 95% насыщения), что можно объяснить опусканием охлажденных поверхностных вод. Ниже 25 м содержание кислорода закономерно убывает и на горизонте 700 м достигает 3,66 мл/л, или 44% насыщения.

На разрезе Килязи — бухта Бекдаш (V) максимальные величины кислорода на поверхности составляют 7,90 мл/л, минимальные — 7,31 мл/л, средние — 7,64 мл/л, или соответственно 99, 95 и 97%. На горизонте 10 м так же, как и на предыдущем разрезе, содержание кислорода немного повышено: 7,99; 7,38; 7,65 мл/л, или 101; 92 и 97%. Ниже кислород постепенно убывает и на глубине 100 м составляет в среднем 7,21 мл/л.

Описанные четыре разреза характеризуют зимний режим кислорода в воде Среднего Каспия. В среднем содержание кислорода уменьшается с севера на юг; на всех горизонтах наблюдается снижение кислорода по разрезам в следующем порядке: о. Чечень — п-ов Мангышлак с его холодными зимними водами, Махачкала — мыс Сагындык и Дивичи — бухта Кендырли.

Распределение кислорода весной. На севере Среднего Каспия (резрез I — о. Чечень — п-ов Мангышлак) по сравнению с зимой абсолютное количество кислорода весной меньше, что объясняется прогревом вод. С глубиной содержание кислорода увеличивается. Несколько южнее (разрез Махачкала—мыс Сагындык) также наблюдается увеличение абсолютного количества кислорода от поверхности ко дну, что обусловлено предшествующим зимним опусканием обогащенных кислородом вод в связи

с опусканием охлажденных зимой поверхностных вод и сползанием их как более плотных и тяжелых по склону. Насыщенность кислородом, наоборот, с глубиной падает благодаря повышению растворимости кислорода с понижением температуры воды (табл. 96).

Tаблица 96 Среднее содержание кислорода весной. 1958—1962 гг.

				Pas	резы					
Горизонт, м	1		1	I	I	V	,	V	Cpe	днее
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
0 10 25 50 75 100 150 200 300 400 500 600 750	7,40 7,64 8,15	101 101 104	7,50 7,85 8,14 8,35 8,34	103 102 97 90 87	7,36 7,55 7,58 6,91 6,98 6,54 4,33 3,96 3,77 3,75 3,70 3,58 3,61	102 104 101 91 89 79 53 48 44 — 44 42 42 42	7,51 7,41 6,99 6,57 5,58 5,29 4,03	102 	7,44 7,68 7,82 7,42 7,66 6,56 4,96 4,62 3,90 3,75 3,70 3,58 3,61	102 102 100 90 88 81 62 56 46 44 42 42 42

В глубоководной части (разрез IV — Дивичи — бухта Кендырли) в поверхностной зоне наибольшее содержание кислорода отмечено в слое 10—25 м — это подповерхностный максимум, вызванный интенсивным развитием здесь фотосинтеза. Ниже кислорода становится меньше. В слое 100—150 м количество его резко падает с 6,54 до 4,33 мл/л, или с 79 до 53%. На этой глубине отмечено резкое понижение температуры, сопровождающееся увеличением плотности воды. Это затрудняет вертикальную циркуляцию и как результат вызывает уменьшение кислорода. Ниже 150 м содержание кислорода постепенно убывает, и на 750 м его содержание равно 3,61 мл/л, или 42% (табл. 96).

На юге Среднего Каспия (разрез V — Килязи — бухта Бекдаш), в районе подъема от впадины к Апшеронскому порогу, кислород обычно уменьшается с глубиной. Среднее содержание его в слое 0—300 м уменьшается от 7,51 до 4,03 мл/л, или от 102 до 49% насыщения.

Для весеннего распределения кислорода в Среднем Каспии характерно следующее: в зоне 0-25 м кислород накапливается за счет интенсивно протекающего процесса фотосинтеза, насыщение воды кислородом $100\,\%$ и выше. Ниже сохраняется запас

кислорода, поступившего с холодными северными водами в результате зимней вертикальной циркуляции вод.

Распределение кислорода летом. В мелководных северных районах (разрезы I и II) колебания кислорода небольшие (табл. 97). Водная толща прогрета до дна и поэтому сравнительно однородна. В глубоководной части (разрезы III — Дербент — м. Песчаный и IV — Дивичи — бухта Кендырли) отмечается некоторое уменьшение кислорода с севера на юг от 100—52 до 97—39% насыщения. Очевидно, воды на юге более прогреты, кроме того, на севере в глубоководной части сохраняются зимние запасы кислорода, в то время как южнее процессы прогрева и перемешивания водных масс протекают быстрее и интенсивнее. На разрезе Дербент — м. Песчаный наблюдается подповерхностное повышение кислорода на глубинах 25—200 м, между тем южнее на разрезе Дивичи — бухта Кендырли воды прогреты глубже и разность плотностей вод почти не наблюдается.

Таблица 97 Среднее содержание кислорода летом. 1958—1962 гг.

					Pası	резы						
Горизонт,		1		II	1	II	Г	V	v		Сре	еднее
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
0 10 25 50 75 100 150 200 300 400 500 600 750	5,84 5,65 5,16	102 96 75	5,90 5,70 5,96 5,88 5,12	103 98 87 77 — 63	5,77 6,43 6,13 6,22 6,00 5,31 5,07 4,27 —	100 	5,54 5,77 5,71 5,36 5,29 4,81 3,83 3,60 3,49 3,34 3,34 3,55	97 97 82 70 69 64 47 43 42 41 41 39 42	6,01 5,79 5,89 - 5,59 4,95 5,35 4,19	99 84 76 71 66 65 54	5,81 5,71 5,81 5,56 4,88 5,06 4,37 4,30 3,49 3,34 3,55	1000 97 85 75 70 65 62 54 46 41 39 42

На разрезе Килязи — бухта Бекдаш отмечается закономерное понижение кислорода сверху вниз от 6,10 до 4,19 мл/л, или от 99 до 54% насыщения (глубины до 300 м).

Летом среднее содержание кислорода на всех разрезах меньше, чем зимой и даже весной. Уменьшение содержания кислорода летом связано с прогревом водной толщи и в большей степени с интенсивным потреблением его в результате биохимических процессов, протекающих в теплое время года. Не-

значительные колебания абсолютных величин кислорода на отдельных горизонтах свидетельствуют об устойчивости темпе-

ратур в течение лета.

Распределение кислорода осенью. Содержание кислорода осенью определяется главным образом температурным режимом. В связи с похолоданием абсолютное количество кислорода в воде увеличивается. Это особенно заметно на северном разрезе Чечень — п-ов Мангышлак, где раньше наступает охлаждение воды и прекращается фотосинтез. Увеличение растворимости кислорода влечет за собой ненасыщение им воды, что и наблюдается в осенний сезон. Исчезновение слоя плотностного скачка обусловливает равномерное распределение кислорода по глубине (табл. 98).

Таблица 98 Среднее содержание кислорода осенью. 1958—1962 гг.

					Pas	резы					0-	
Гори-			1	I	II	I	IV		V		Сред	нее
М	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
0 10 25 50 75 100 150 200 300 400 500	7,12 7,26 7,04	94 96 94	6,11 6,06 4,85 — —	105 103 66 — —	6,12 6,23 6,08 5,63 5,59 5,41 5,60 5,25 4,36 4,45 4,50	94 95 94 73 65 63 68 67 53 53	6,28 6,16 5,35 5,18 — (6,02) 4,86 4,11 4,21 3,77	98 93 74 69 - 76 - 61 50 49 44	5,98 5,97 5,65 — 5,39 5,92 5,42 — 4,73	94 93 86 — 68 74 67 — 57	6,32 6,34 5,79 5,40 5,49 5,78 5,51 5,15 4,40 4,33 4,14	97 96 83 71 66 71 68 64 53 51 48

Таким образом, наибольшее количество кислорода в воде наблюдается в зимнее время в связи с низкими температурами воды. Абсолютное содержание кислорода уменьшается с севера на юг. В глубоководной части моря намечаются кислородные максимумы, как реликты зимнего охлаждения. Эта часть моря характеризуется сползанием охлажденных зимой масс воды по северному склону на глубокие участки, обусловливая таким образом перемешивание вод и усиливая аэрацию придонных горизонтов.

Весной верхняя зона 0—25 м обогащена кислородом в связи с интенсивным развитием фитопланктона. Благодаря отсутствию в апреле слоя плотностного скачка кислород из верхней зоны проникает глубже, до 75—100 м, и только ниже отчетливо наблюдается уменьшение кислорода до 3,61 мл/л, или 42% насыщения в придонном слое на глубине 750 м.

Летом содержание кислорода в толще воды меньше вследствие общего прогрева вод и расхода кислорода на окислительные процессы. Летний сезон характеризуется наличием сформировавшегося к августу гидрологического слоя скачка плотности, который отражается и на вертикальном распределении кислорода, затрудняет его проникновение вниз и влечет за собой формирование подповерхностного слоя кислородного максимума приблизительно на глубине 50—75 м. На наличие этого скачка указывали и предшествующие исследователи. Так, Книпович (1921) отметил частые случаи наибольшего содержания кислорода на глубинах 25 и 35 м, а не на поверхности. Бруевич (1937) неоднократно указывал на высокие концентрации кислорода фотосинтетического происхождения на глубинах до 100 м. Он же отмечает высокое содержание кислорода у дна как остаточное явление зимнего охлаждения.

Осенью абсолютное содержание кислорода по сравнению с его содержанием летом повышается в связи с начинающимся охлаждением вод и к зиме достигает опять максимума. Но одновременно насыщенность воды кислородом становится меньше, так как затухают процессы фотосинтеза и ослабевает жизнедеятельность организмов.

Режим кислорода в Южном Каспии

Распределение кислорода в Южном Каспии рассматривается по четырем разрезам: о. Жилой — маяк Куули, о. Камень Игнатия — п-ов Челекен, о. Куринский Камень — о. Огурчинский и Ленкорань-Белый Бугор, Разрез о. Жилой-маяк Куули проходит по Апшеронскому порогу и характеризует очень динамичный по гидрометеорологическим условиям район между Средним и Южным Каспием. Апшеронский район своеобразен по режиму течений, волнений, температуры. Водообмен через подводный хребет между Средним и Южным Каспием происходит в противоположных направлениях по глубине. Основной поток из южной части моря занимает среднюю и восточную части глубоководного желоба от поверхности до дна, имея почти одинаковую скорость по всей толще воды. Таким образом, в большую часть Апшеронского района приходит нагретая южнокаспийская вода с меньшим содержанием кислорода, чем на северном склоне порога. Из Среднего Каспия в Южный поступают глубинные воды, занимая западную часть материкового склона.

Как видно из табл. 99, величины содержания кислорода, особенно относительные, на разрезе о. Жилой — маяк Куули более близки к таковым в южной части моря, поэтому этот разрез и отнесен к Южному Каспию.

Основная закономерность — убывание кислорода по глубине как в абсолютном, так и относительном выражении — сохра-

няется и в Южном Каспии во все сезоны года. Наименьшие концентрации кислорода отмечаются на глубинах 500—750 м. Иногда у дна количество его несколько увеличивается, возможно, это остаточное явление зимнего охлаждения.

 $T a б л u q a \ 99$ Распределение кислорода по сезонам в Среднем Каспии (a), Апшеронском районе (δ) и Южном Каспии (a). Средние данные

				1.00					16.			
Горизонт,		Зима			Весна			Лето			Осень	
м м	а	б	8	а	б	в	а	6	8	a	б	8
					M	л/л						
0	7,70	7,08	7,25	7,44	7,22	7,36	5,81	5,74	5,73	6,32	6,08	6,0
10 25 50	7,87 7,80 7,34	7,20 6,90	7,17 7,15 6,76	7,68 7,82 7,42	7,18 6,59	7,39 6,91	5,71 5,81 5,81	5,48 4,74	5,48 5,43	6,34 5,79 5,36	5,75 5,13	5,7 5,3
75	7.17	6.19	6,26	7.66	6.20	6,46	-		-	5,49 5,78		-
100 150	6,82 4,87	6,12 5,63	5,09 4,57	6,56 4,96	5,15	5,46 4,20	5,56	3,98	4,51 3,54	5,78 5,51	4,57	4,5
200	4,32	3,97	3,50	4,62	5,12	3,74	5,06	3,94	3,15	5,15	4,79	3,5
Среднее	6,74	6,16	5,97	6,77	6,08	5,93	5,52	4,78	4,66	5,72	5,26	5,0
					% нас	ыщен	ия					
0	94	93	96	102	96	103	100	100	101	97	95	99
10 25	96 96	93	94 93	102 100	96	99	97 85	87	87	96 83	84	93
50	91	86	88	90	84	92	75	62	86	71	69	74
75 100	89 85	83 79	84 66	88 81	82 66	85 71	70	48	57	66 71	58	59
150	61	62	53	62		56	65	40	45	68	-	_
200	53	38	38	56	48	43	62	52	40	64	53	42
Среднее	83	76	75	85	79	78	79	70	68	77	72	74

Так же, как и в Среднем Каспии, максимальное содержание кислорода приходится на зимний и весенний сезоны. Весной кислорода больше, чем зимой, что связано, с одной стороны, с зимним обогащением глубин кислородом зимой, с другой — с интенсивным процессом фотосинтеза в это время года; последнее относится главным образом к западной мелководной части моря, в частности, к куринскому взморью.

Наименьшее количество кислорода отмечается летом, когда он расходуется на биохимические процессы. Нередко наблюдаются максимумы кислорода на глубине 25—50 м, что является

результатом формирования скачка плотности.

Сравнительная характеристика межсезонного распределения кислорода дана в табл. 100.

Таблица 100 Среднее содержание кислорода по сезонам 1958-1962 гг. Разрезы Среднее Горизонт, VI VII IX VIII мл/л % мл/л % мл/л % мл/л % мл/л % Зима 7,73 7,47 7,12 6,86 6,88 5,74 7,25 7,17 7,15 6,76 7,08 7,12 7,07 6,86 7,13 6,85 5,70 4,43 3,50 3,74 2,62 2,70 2,27 2,12 1,80 50 75 7,20 6,90 6,42 79 74 55 6,26 5,09 4,57 3,66 2,65 2,60 2,29 2,25 1,86 6,19 6,12 5,63 3,97 4,08 3,26 2,68 2,50 2,30 2,38 1,91 28 27 -_ 22 Весна 7,36 7,39 6,91 6,46 7,27 7,40 6,90 7,61 7,58 7,17 6,86 5,87 4,19 3,35 2,55 2,11 1,99 101 7,32 7,22 7,18 6,59 50 75 6,98 71 51 6,33 5,20 3,24 3,21 2,78 2,47 2,30 5,46 3,79 3,74 2,67 2,36 2,18 2,22 2,09 2,10 2,00 6,20 5,60 3,93 3,27 2,68 2,49 2,24 2,42 2,10 2,10 2,00 5,15 5,12 27 27 2,01 2,08 25 23 25 2,30 Лето 5,74 5,48 4,74 3,98 5,73 5,48 5,43 4,51 3,54 3,15 2,73 2,54 2,31 2,14 1,92 1,93 2,09 5,86 5,60 5,70 50 76 5,96 4,57 3,50 2,95 5,60 5,12 3,58 2,74 2,73 2,22 2,16 1,86 1,82 1,29 4,35 3,55 2,95 3,94 2,62 2,28 2,12 2,01 2,09 1,55 2,77 23 2,50 2,34 25 25 25 22

2,42 2,62

				Раз	резы					
Горизонт, м	v	I	V	II	VI	II	D	ζ	Сред	нее
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
	#216			(Осень					
0 25 50 100 200 300 400 500 700 800 850	6,08 5,75 5,13 4,57 4,79	95 84 69 58 53	5,93 5,76 5,68 4,55 2,99 2,66 2,42 2,26 2,27 - 2,47	100 97 79 61 37 33 29 27 28 — 30	6,07 5,86 5,34 4,39 2,75 2,51 2,33 2,33 2,42 2,29 2,33	102 97 73 57 35 31 29 28 29 28 32	6,03 5,79 5,38 4,50 3,51 2,59 2,38 2,30 2,35 2,29 2,40	99 93 74 59 42 32 29 28 28 28		

Сравнительная характеристика кислородного режима в Среднем и Южном Каспии

Содержание кислорода (как абсолютное, так и относительное) в водах Среднего Каспия выше, чем в водах Южного Каспия. Из табл. 101 видно, что наиболее насыщены кислородом глубинные водные массы Среднего Каспия. Начиная с горизонта 200 м, насыщенность кислородом в Среднем Каспии почти в два раза больше, чем в Южном. Отсюда следует, что вертикальная циркуляция вод в средней части Каспийского моря протекает значительно интенсивнее, чем в южной. Этот факт подтверждается и другими данными, а именно величинами колебаний в содержании кислорода на поверхности и у дна. В Южном Каспии это различие составляет по средним данным зимой, весной и летом соответственно около 5,4; 5,4 и 3,6 мл/л; а в Среднем Каспии соответственно — 4,0; 3,8 и 2,3 мл/л.

Сезонная изменчивость кислорода в Среднем и Южном Каспии (рис. 42) на глубинах больше 200 м выражена очень слабо. Абсолютные значения кислорода в поверхностных водах и насыщенность их зачастую больше в Южном Каспии. Это естественно, так как процессы фотосинтеза, с которыми связано продуцирование кислорода развиты в более теплых водах сильнее.

На графиках можно видеть также, что зона аккумуляции кислорода расширяется от зимы к лету, захватывая большие

глубины.

Общая картина сезонного вертикального распределения кислорода представлена на меридиональном разрезе Среднего и Южного Каспия (рис. 43), который сделан на основании наблюдений на глубоководных станциях всех широтных разрезов. Изо-

ксигены повышаются к югу, указывая на уменьшение кислорода в южной части моря. В поверхностном и подповерхностном горизонтах изоксигены направлены почти горизонтально в связи

Таблица 101 Среднее содержание кислорода по сезонам. 1958—1962 гг.

Горизонт,		-M7	т/л				%	
м м	Зима	Весна	Лето	Осень	Зима	Весна	Лето	Осень
			Сред	ний Каспі	ий			
0 10 25 50 75 100 150 200 300 400 500 600 700 750	7,70 7,87 7,80 7,34 7,17 6,82 4,87 4,32 3,81 3,58 3,59 3,59 3,66 3,61	7,44 7,68 7,82 7,42 7,66 6,56 4,96 4,62 3,90 — 3,75 3,70 3,58 3,61	5,81 5,71 5,81 5,81 5,56 4,81 5,06 4,37 4,30 3,84 3,49 3,34 3,55	6,32 6,34 5,79 5,36 5,49 5,78 5,51 5,15 4,40 4,33 4,14	94 96 96 91 89 85 61 53 47 44 42 42 44	102 102 100 90 88 81 62 56 46 	100 97 85 75 70 64 62 54 53 46 41 39 42	97 96 83 71 66 71 68 64 53 51 48
			Юж	ный Каспі	ий			
0 10 25 50 75 100 150 200 300 400 500 600 700 750 800 850	7,25 7,17 7,15 6,76 6,25 5,09 4,57 3,50 2,65 2,60 2,29 2,25 1,86	7,36 7,39 6,91 6,46 5,46 4,20 3,74 2,67 2,36 2,18 2,05 2,22 2,09 2,10 2,00	5,73 5,48 5,43 - 4,51 3,54 3,15 2,54 2,31 2,14 1,92 1,93 - 2,09	6,03 5,79 5,38 4,50 3,51 2,59 2,38 2,30 - 2,35 - 2,29 2,40	96 94 93 88 84 66 53 38 33 30 28 28 23	103 	101 	99 -93 74 -59 -42 32 29 28 -28 -28 31

с отсутствием колебаний кислорода. Даже летнее насыщение поверхностных вод не уменьшается на юге. Убыль кислорода, связанная с повышением температуры, компенсируется интенсивным продуцированием кислорода в результате фотосинтеза.

Обычно кислорода больше в западной части моря, что обусловлено влиянием речного стока. Сток Волги, направленный к югу, прижимается к западному берегу и прослеживается до

Апшеронского полуострова и даже южнее. В Южном Каспии источником повышенного содержания кислорода на западе является сток куринских вод. Речные воды мало минерализованные по сравнению с морскими, как правило, более богаты растворенным кислородом. Они хорошо аэрируются при движении,

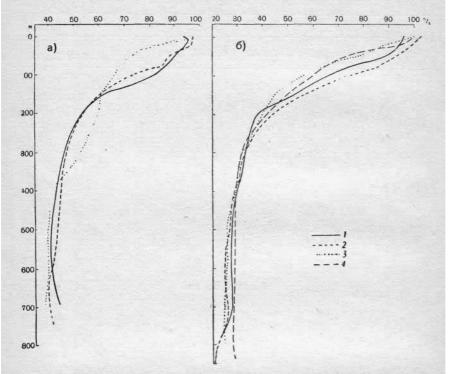
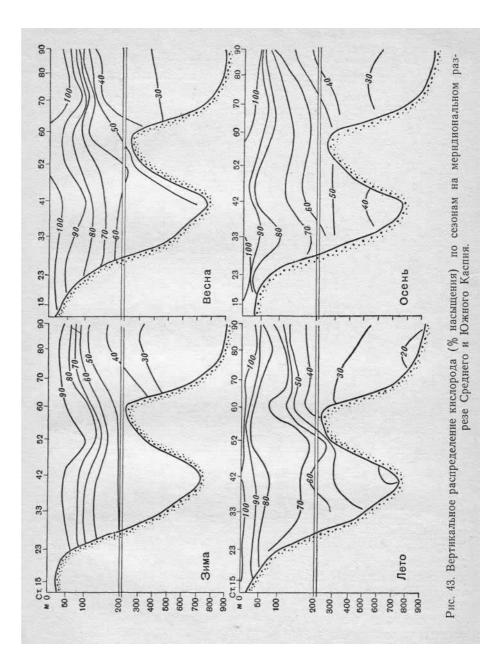



Рис. 42. Вертикальное распределение кислорода (% насыщения) по сезонам: a — Средний Қаспий, δ — Южный Қаспий. I — зима, 2 — весна, 3 — лето, 4 — осень.

в них интенсивно протекают процессы фотосинтеза. По данным А. А. Зенина и А. В. Проценко (1961) количество кислорода в волжской воде колебалось в пределах 6,75—13,08 мг О₂/л в течение 1957 г. и 7,39—14,62 мг О₂/л в течение 1958 г. Насыщение воды кислородом составляло в 1957 г. 46—101%, в 1958 г. 58—99%. По наблюдениям Астраханской ГМО, содержание растворенного кислорода в Верхне-Лебяжьем в 1962 г. в период с января по ноябрь колебалось в пределах 8,00—13,82 мл/л, что составляло 85—102% насыщения. Как отмечают исследователи, режим кислорода в Волге мало изменяется по длине реки.

Куринские воды содержат кислорода также больше (9— 10 мл/л, по данным Ежегодника), чем морские. В предустьевой

области и на взморье Куры содержание кислорода в редких случаях несколько превышало 8 мл/л (8,10 мл/л, по данным Морского отдела Бакинской ГМО).

Такого количества кислорода, какое наблюдается в волжской и куринской водах и в других более мелких реках западного побережья, в каспийских водах не отмечено. Максимальные вели-

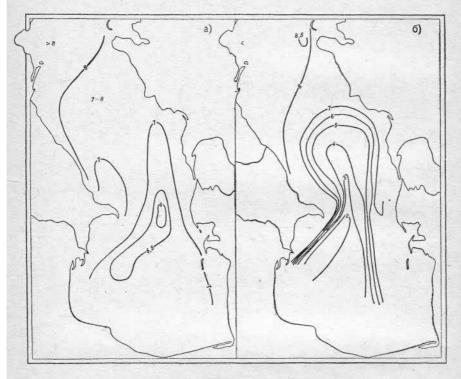


Рис. 44. Распределение кислорода зимой (мл ${\rm O_2/\pi}$). a- поверхность, $\delta-$ дно.

чины кислорода обычно не превышают 8 мл/л и лишь очень редко достигают 9 мл/л.

В восточной части Каспийского моря речного стока нет. Здесь на мелководьях иногда наблюдается региональное увеличение кислорода за счет полного перемешивания вод и обогащения их атмосферным и продуцируемым в результате фотосинтеза кислородом.

Пространственное распределение кислорода в поверхностном и придонном слоях воды Каспийского моря иллюстрировано картами (рис. 44—47). Асимметричное расположение изолиний кислорода отчетливо зимой. Изоксигена 8 мл/л отделяет северо-

западную часть Среднего Каспия, граничащую с Северным Каспием, где наиболее холодные воды и откуда поступает речной сток. Изоксигена 7 мл/л вдается языком из Южного Каспия в Средний, причем в середине языка проходят изолинии 6,50 и 6,00 мл/л. Такое распределение кислорода обусловлено меньшим содержанием его в теплых водах, которые как бы вклиниваются

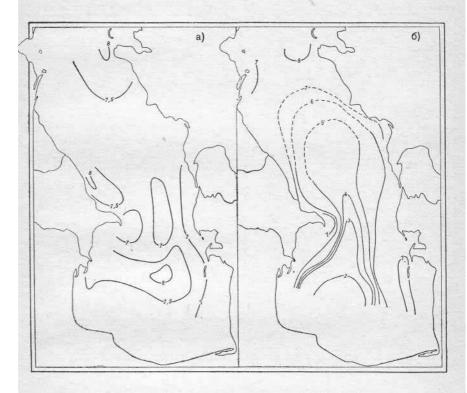


Рис. 45. Распределение кислорода весной (мл ${\rm O_2/n}$). a- поверхность, $\delta-$ дно.

с юга на Апшеронский порог и идут далее на север (Л. П. Тамбовцева 1961).

Влияние куринских вод на распределение кислорода в Южном Каспии отчетливо сказывается в апреле — в период наибольшего поступления речных вод. Изоксигена 7,50 мл/л проходит с запада от куринского взморья на восток, охватывая даже центральную часть моря. На поверхностном распределении кислорода сильно сказываются сезонные условия, т. е. колебания температуры, интенсивность фотосинтеза, формирование слоя

скачка (причем в разные годы на различных глубинах), окислительные процессы и др.

Ход изоксиген в придонном слое одинаков во все сезоны года. Наименьшее значение кислорода 2 мл/л приходится на центральную глубоководную часть Южного Каспия. В феврале и апреле изолиния 2 мл/л вытянута (рис. 44 и 45) в виде языка

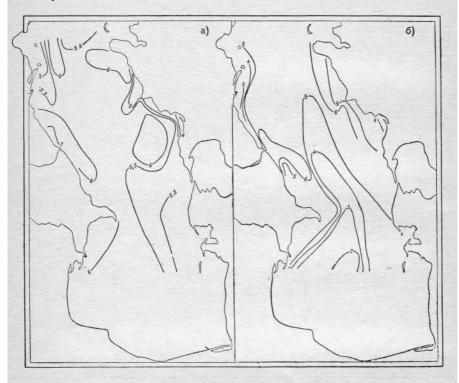


Рис. 46. Распределение кислорода летом (мл O_2/π). a- поверхность, $\delta-$ дно.

с юга к Апшеронскому порогу и направлена на Средний Каспий. На больших глубинах Среднего Каспия (разрез Дивичи — бухта Кендырли) проходит изолиния 4 мл/л, так как здесь содержание кислорода значительно больше, чем в глубинных слоях Южного Каспия. У берегов и к северу (к разрезу Махачкала — мыс Сагындык) содержание кислорода постепенно увеличивается. В расположении изоксиген и изотерм (данные по температуре взяты по Тамбовцевой, 1961) имеется большое сходство, что можно объяснить большим влиянием температуры на содержание кислорода. На это сходство в распределении изотерм и форм некоторых изоксиген указывал и Книпович (1921).

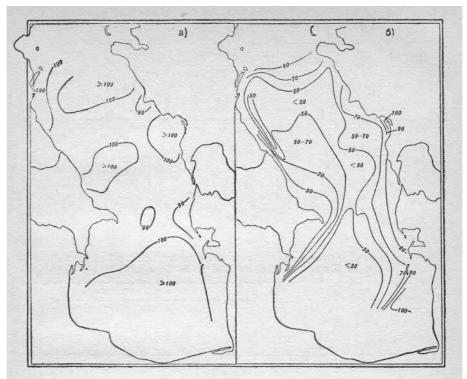


Рис. 47. Распределение кислорода осенью (% насыщения). a- поверхность, $\delta-$ дно.

Изменение кислородного режима в Среднем и Южном Каспии в разные периоды 1

Подробные исследования режима кислорода проведены Книповичем в 1914—1915 гг. По его данным, высокое содержание кислорода наблюдается в слое до 100 м, на глубине 200—400 м оно понижено и с 500 м до дна не превышает 1 мл/л. В придонных слоях кислород отсутствует (Средний Каспий) или выражается долями мл/л (Южный Каспий). На глубине 700 м и даже на меньшей глубине в Среднем Каспии присутствует сероводород, в Южном Каспии он встречается лишь иногда в наиболее глубоких слоях (табл. 102).

Распределение кислорода в 1904 г., по материалам Лебединцева, имеет в общем сходство с распределением в 1914—1915 гг., на это указывает и Книпович. Правда, в 1904 г. в Среднем Каспии на глубине 700 м кислород был обнаружен в количестве 0,3 мл/л, позднее он не наблюдался.

¹ В составлении данного раздела принимал участие Е. Б. Чернявский.

	Содер	жание к	ислород моря	а (мл/л) (по Н. Л	в разнь 1. Книпо	ых частя: овичу)	х Каспи		ица 10
Глубина, м	Северный Каспий	Срединй Каспий	Южиый Каспий	Все море	Глубина, м	Северный	Средний Каспий	Южный Каспий	Все море
0 10 25 50 100 200 300	7,60 6,91 —	7,14 7,23 7,53 6,87 6,42 3,76 2,57	6,86 6,81 6,89 6,09 4,97 3,79 2,64	7,00 6,96 7,11 6,38 5,45 3,78 2,59	400 500 600 700 800 900		1,62 0,71 0,34 0,00	1,53 0,64 0,37 0,23 0,41 0,04	1,55 0,65 0,36 0,15 0,41 0,04

Таблица 103

Средние величины и сезонные разницы кислорода для Среднего и Южного Каспия за 1934 г. (по Бруевичу)

	21 II-	-8 111	25 VII	I-12 X	Средние	годовые	Сезонные	разниць
Горизонт, м	Средний	Южиый Каспий	Средний Каспий	Южиый Каспий	Средний Каспий	Юж ный Каспий	Средний Каспий	Южный Каспий
				мл/л				
10 25 50 100 200 400 600 700 800	8,25 8,20 8,05 7,80 7,24 4,65 (2,68) (1,43)*	7,90 7,90 7,62 7,18 5,86 4,04 2,09 1,06 0,45 0,37	5,94 5,97 5,78 6,07 6,09 4,23 2,17 1,42	5,35 5,39 5,54 5,15 4,35 3,31 2,05 0,42 0,02 0,04	7,10 ¹ 7,08 ¹ 6,92 ¹ 6,94 ¹ 6,66 ¹ 4,44 2,42 1,42	6,62 ¹ 6,64 ¹ 6,58 ¹ 6,16 ¹ 5,11 3,67 2,07 0,74 0,23 0,20	2,31 2,23 2,27 1,73 1,15 0,42 (0,51) 0,01	2,55 2,51 2,08 2,03 1,50 0,73 0,04 1,15 0,43 0,33
			% I	асыщени	я			
0 10 25 50 100 200 400 600 700 800	101 101 99 95 88 56 (32) 17	104 103 101 94 75 50 25 13 6 4	98 97 86 74 74 51 27 17	94 95 90 70 55 40 25 6 0	99 99 921 841 811 54 30 17	99 961 771 651 45 25 9 3	5 4 13 21 14 5 (5) 0	10 8 11 24 20 10 0 7 6 4

С. В. Бруевич (1937) по материалам наблюдений 1934 г. дал характеристику режима кислорода в зимний и летний сезоны в Среднем и Южном Каспии (табл. 103). По его данным содержание кислорода увеличилось особенно в глубинных горизонтах. Бруевич констатирует присутствие кислорода на максимальных глубинах Среднего Каспия в количестве 0,13—0,64 мл/л, а на глубинах ниже 700 м в Южном Каспии — присутствие сероводо-

рода в количестве 0,29 мл/л.

После 1934 г. в Каспийском море проводились отдельные экспедиции разными организациями, главным образом ВНИРО. Но эти работы не носили систематического характера и относились в основном к Северному Каспию. По Среднему и Южному Каспию имелись материалы за 1935—1943 гг., собранные в ГОИНе Ивановым. Данные своих экспедиционных наблюдений и из других литературных источников в 1952 г. Иванов критически проанализировал и привел к стандартным горизонтам. Для удобства сравнения все данные за 1934—1943 гг. сведены по сезонам отдельно для Среднего и Южного Каспия (табл. 104, 105).

Сравнение данных по кислороду за последние годы с данными за 1934—1943 гг. убедительно указывает на обогащение кислородом вод Каспийского моря в настоящее время. Как видно из приведенных в табл. 106 средних данных, концентрация кислорода во всей толще вод значительно возросла. Однако интересно отметить некоторое обеднение кислородом вод на средних горизонтах (выше 400 м), т. е. тех слоев, до которых, по-видимому, распространялась ранее зимняя вертикальная циркуляция (рис. 48).

По мнению ряда исследователей, повышение кислорода вызвано сползанием охлажденных богатых кислородом и более плотных вод Северного Каспия по склону в глубины Среднего и, в меньшей степени, Южного Каспия. Это явление впервые было отмечено Книповичем (1921) и в дальнейшем на основании анализа условного удельного веса воды подтверждено Бруевичем

(1937) и еще позднее Косаревым (1963).

В результате этих процессов улучшилась аэрация придонных толщ, распределение кислорода по вертикали стало равномернее, изменилась газовая стратификация вод глубоководной части Каспийского моря. Эти изменения могут быть объяснены

гидрологическими факторами.

В большинстве морских бассейнов, лежащих в зоне значительных колебаний температуры воздуха (арктической, антарктической и умеренной), глубинные воды формируются за счет сползания вниз по склонам вод, охлажденных зимой на материковой отмели. Во время осенне-зимнего охлаждения в верхних слоях моря развивается конвекция (так называемая вертикальная зимняя циркуляция), распространяющаяся все глубже и глубже по мере понижения температуры воздуха. В слое конвек-

Распределение кислорода в Среднем

		31	тма		1		Весна	1		
Гори- зонт, м	бухта	чи — Кен- рли	Среді	нее	мыс	ікала — Сагын- ык	Дивич бухта дыр	Кен-	Сре	цнее
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
0 25 50 100 200 300 400 500 600 700 800	7,14 7,04 6,53 6,55 5,26 3,85 3,04 3,05 3,12	94 93 82 77 64 47 36 36 ————————————————————————————————	7,14 7,04 6,53 6,55 5,26 3,85 3,04 3,05 3,12	94 93 82 77 64 47 36 36 ————————————————————————————————	8,00 7,65 8,12 7,55 — — — — — —	101 96 99 — — — —	7,83 7,86 7,68 7,31 5,13 4,23 2,90 — 2,31 1,30 1,14	100 98 97 91 63 51 30 — 20 15 13	7,92 7,76 7,90 7,43 5,13 4,23 2,90 3,21 2,31 1,30 1,14	101 97 98 91 63 51 30 29 20 15

Распределение кислорода в Южном

			3	има					Bed	сна		
Гори- зонт, м	о. Жи. маяк I		о. Кури Камен о. Огу ски	нь — рчин-	Cpe;	иее		лой — Куули	o. Kypi Kamei o. Ory cki	нь — рчин-	Сред	нее
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
0 25 50 100 200 300 400 500 600 700 800 900	6,92 6,70 6,10 5,12 3,90 — — — — —	93 90 83 67 54 — — —	6,56 6,51 4,56 — 3,56 2,98 2,79 1,98 0,99 0,92 0,83 0,75	96 94 71 	6,74 6,60 5,33 5,02 3,73 2,98 2,79 1,98 0,99 0,99 0,83 0,75	95 92 77 67 49 39 34 28 13 11 10 9	7,56 7,47 7,27 5,56 4,06 — — — —	102 100 92 60 48 — — —	7,31 7,42 6,85 5,70 3,84 3,04 2,38 1,33 0,79 0,64 0,32	101 96 87 68 46 39 28 18 8 7	7,43 7,44 7,06 5,63 3,95 3,04 2,38 1,33 0,79 0,64 0,32	101 98 90 64 47 39 28 18 8 7

Каспии. 1935—1943 гг.

		Ле	2то					Oc	ень				
Махачк мыс С ды	агын-	Диви бухта ды:	Кен-	Сре	Среднее		Махачкала — мыс Сагын- дык		чи — Кен- оли	Среднее		Среднее многолет- нее	
мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
5,84 5,48 5,41 4,86 — — — —	103 81 69 — — — —	5,76 6,01 5,65 5,42 4,68 3,78 2,99 2,66 1,86 0,95	101 86 71 67 56 43 36 33 18 11	5,80 5,74 5,53 5,14 4,68 3,78 2,99 2,66 1,86 0,95	102 84 70 67 56 43 36 33 18 11	6,31 6,35 5,80 4,64 — — — —	101 88 70 — — — — —	5,43 5,86 5,55 5,78 4,84 3,40 2,65 1,50 0,89	96 87 72 69 59 41 32 18 11	5,87 6,10 5,68 5,21 4,84 3,40 2,65 1,50 0,89	98 88 71 69 59 41 32 18 11 —	6,68 6,66 6,41 6,08 4,98 3,82 2,89 2,60 2,04 1,12	99 90 80 76 60 46 34 29 16

Таблица 105

Каспии. 1935—1943 гг.

		Ле	то					Oc	ень				
о. Жил маяк І-				о. Жилой — маяк Куули		о. Куринский Камень — о. Огурчин- ский		Среднее		Среднее многолет- нее			
мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
5,39 5,85 5,31 4,97 3,93 — — — —	98 87 68 62 57 — — — —	5,43 6,51 5,21 3,83 3,19 2,90 1,88 1,43 0,57 0,43	98 105 77 62 40 34 26 16 9 7	5,41 5,28 5,26 4,40 3,56 2,90 1,88 1,43 0,57 0,43	98 90 72 62 48 34 26 16 9 7	6,60 6,41 5,45 4,81 4,31 — — —	97 94 74 62 48 — — —	6,67 6,60 5,21 4,19 3,16 2,84 2,27 1,40 0,97 0,82	97 96 75 55 44 34 23 13 11 10 3	6,64 6,50 5,33 4,50 3,74 2,84 2,27 1,40 0,97 0,82	97 95 74 58 46 34 23 13 11 10 3	6,56 6,46 5,74 4,89 3,74 2,94 2,33 1,54 0,83 0,70 0,58	98 94 78 63 48 36 28 19 10 9

		3	има			В	есна			Ле
Горизонт,	1958-	-1962	1935-	1935—1943		-1962	1935-	-1943	1958—1962	
	мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
										Сред
0 25 50 100 200 300 400 500 600 700	7,70 7,80 7,34 6,82 4,32 3,81 3,58 3,50 3,59 3,66	94 96 91 85 53 47 44 42 42 44	7,14 7,04 6,53 6,55 5,26 3,85 3,04 3,05 3,12	94 93 82 77 64 47 36 36 ————————————————————————————————	7,44 7,82 7,42 6,56 4,62 3,90 — 3,75 3,70 3,58	102 100 90 81 56 46 44 42 42	7,92 7,76 7,90 7,43 5,13 4,23 2,90 3,21 2,31 1,30	101 97 98 91 63 51 30 29 20	5,81 5,81 5,56 5,06 4,37 4,30 3,84 3,49 3,34	100 85 75 70 62 54 53 46 41 39
									ю	жный
0 25 50 100 200 300 400 500 600 700 800	7,25 7,15 6,76 5,09 3,50 2,65 2,60 2,29 	96 93 88 66 38 33 30 28 — 28	6,74 6,60 5,33 5,02 3,73 2,98 2,79 1,98 0,99 0,92 0,83	95 92 77 67 49 39 34 28 13 11	7,36 7,39 6,91 5,46 3,74 2,67 2,36 2,18 2,05 2,22 2,10	103 99 92 71 43 33 29 27 25 26 23	7,43 7,44 7,06 5,63 3,95 3,04 2,38 1,33 0,79 0,64 0,32	101 98 90 64 47 39 28 18 8 7	5,73 5,48 5,43 4,51 3,15 2,54 2,31 2,14 1,92 1,93 2,09	101 87 76 57 40 32 29 26 25 25 25

ции температура и соленость не меняются по вертикали и равны температуре и солености того слоя, которого достигла вертикальная зимняя циркуляция. В глубоководных областях конвекция не доходит до дна, в мелководных районах она быстро охватывает всю толщу воды. Таким образом, на мелководьях вода может охлаждаться вплоть до температуры замерзания. В открытой части моря охлаждение перемешанного слоя ограничивается температурой на нижней его границе, обычно более высокой, нежели в тех местах, где перемешивание достигает дна. Создается положение, когда в вершине склона располагаются воды более высокой плотности, чем нижележащие. Тяжелые воды стекают по склону без нарушения вертикальной устойчивости до тех пор, пока не встретят еще более плотные слои воды, а часто не встречая таковых, — до самых больших глубин. Опу-

(средние	manuta)
Средине	gannbic

то			0	сень			Среднис	е годовые	
1935-	-1943	1958 —	1962	1935-	19351943		-1962	1935-	-1943
мл/л	%	мл/л	%	мл/л	%	мл/л	%	мл/л	%
еспий									V S
5,80 5,74 5,53 5,14 4,68 3,78 2,99 2,66 1,86 0,95	102 84 70 67 56 43 36 33 18 11	6 32 5,79 5,36 5,78 5,15 4,40 4,33 4,14	97 83 71 71 64 53 51 48	5,87 6,10 5,68 5,21 4,84 3,40 2,65 1,50 0,89	98 88 71 69 59 41 32 18 11	6,82 6,80 6,42 6,18 4,79 4,12 4,07 3,81 3,59 3,53	98 91 82 77 59 50 49 45 42 42	6,68 6,66 6,41 6,08 4,98 3,82 2,89 2,60 2,04 1,12 4,33	99 90 80 76 60 46 34 29 16 16
Каспий									
5,41 5,28 5,26 4,40 3,56 2,90 1,88 1,43 0,57 0,43	98 90 72 62 48 34 26 16 9 7	6,03 5,79 5,38 4,50 3,51 2,59 2,38 2,30 2,35 2,29	99 93 74 59 42 32 29 28 — 28 28	6,64 6,50 5,33 4,50 3,74 2,84 2,27 1,40 0,97 0,82	97 95 74 58 46 34 23 13 11 10	6,59 6,45 6,12 4,89 3,48 2,61 2,41 2,23 2,19 2,08	100 93 82 63 41 32 29 27 — 27 25	6,56 6,46 5,74 4,89 3,74 2,94 2,33 1,54 0,83 0,70 0,58	98 94 78 63 48 36 28 19
						3,90	52	3,28	4

скающаяся вода обогащена кислородом, так как во время перемешивания и охлаждения интенсивно поглощала его из атмосферы.

В мелководных районах Каспийского моря в результате осенне-зимнего охлаждения перемешивание достигает дна. Однако по данным Бруевича 1934 г. воды с мелководий до дна Дербентской котловины не проникали. Проникновение охлажденных вод ограничивалось глубиной 300—400 м (Бруевич, 1937).

Недавно Косарев (1963) рассчитал плотность и устойчивость вод. Его расчеты показали, что основным путем формирования глубинных вод Среднего Каспия является сползание по склону охлажденных в северной части Каспийского моря вод в средне-каспийскую впадину. По наблюдениям 1959—1961 гг. в феврале на разрезе о. Чечень — п-ов Мангышлак условная плотность

воды равнялась 11,2—11,4 единиц. Воды с такой плотностью могут опускаться до самых больших глубин в среднюю часть моря. Сделанный в ГОИНе анализ распределения условной плотно-

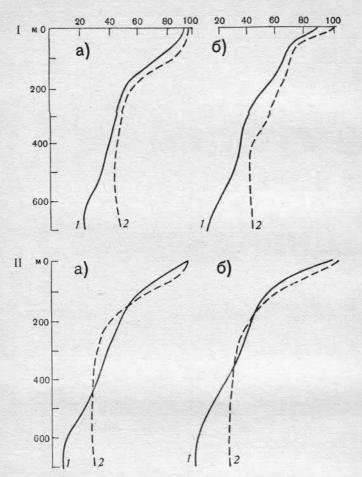


Рис. 48. Сравнительное распределение кислорода (% насыщения) по глубине в разные периоды. I — Средний Каспий, 1934—1943 гг., II — Южный Каспий, 1950—1962 гг.; a — зима, δ — лето.

сти в феврале на придонных горизонтах для 1915, 1934, 1941, 1962 гг. (рис. 49 и 50) показывает, что действительно существует возможность опускания северокаспийских вод до дна Дербентской котловины, и что такой возможности не было в 1915 и 1934 гг. Для большей наглядности составлена по данным карт табл. 107.

В 1915 г. плотность воды на дне котловины была примерно равна плотности на границе Северного и Среднего Каспия, а в 1934 г.—на 0,11 больше; таким образом, сползание вод до

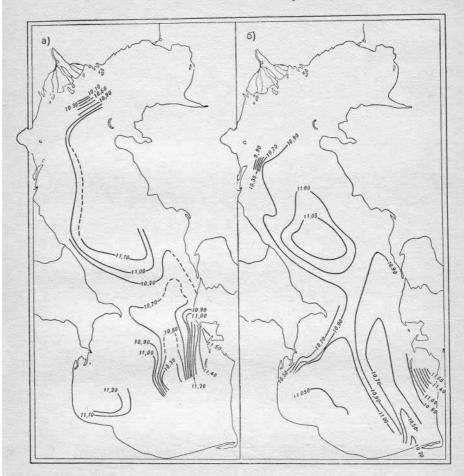


Рис. 49. Распределение условной плотности воды σ_t зимой на придонных горизонтах. a-1915 г., 6-1934 г.

дна было невозможно. К 1962 г. положение изменилось: воды на разрезе о. Чечень — п-ов Мангышлак стали плотнее вод Дербентской котловины. Данные 1937, 1941 и 1961 гг. приведены для сравнения величин плотностей воды в двух рассматриваемых районах.

На картах видно, что зимой существует возможность пополнения глубинных вод среднекаспийской котловины за счет сте-

кания по склону вод из восточных районов Среднего Каспия, главным образом из Казахского залива. Возможности этой или не было 30-50 лет назад, или ее не зафиксировали из-за отсутствия зимних наблюдений в вершине Казахского залива. Во всяком случае на картах 1941 и 1962 гг. (рис. 50) изолиния σ_t

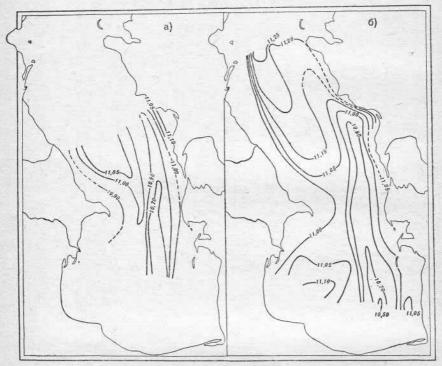


Рис. 50. Распределение условной плотности воды σ_t зимой на придонных горизонтах. a-1941 г., $\delta-1962$ г.

направлена от бухты Кендырли в сторону дна котловины. Значения условной плотности в табл. 108 иллюстрируют это предположение. Сейчас плотность воды в Казахском заливе несколько больше, чем на дне Дербентской котловины.

В Южном Каспии наблюдается такое же положение, как и в Среднем Каспии: зимой вода у о. Огурчинского тяжелее, чем на дне южнокаспийской впадины (табл. 109). Таким образом, постоянно существует возможность сползания по шельфу и по склону зимних восточнобережных вод до самых больших глубин Южного Каспия, а следовательно, и аэрации придонных вод.

Максимальная условная плотность морской воды на разрезе о. Чечень п-ов Мангышлак σ и глубинной воды Дербентской котловины σ_t' зимой

	1915 г.	1934 г.	1937 г.	1941 г.	1961 г.	1962 г.
$\sigma_{t'}$	11,14 11,17 -0,03	10,98 11,09 —0,11	11,93	11,06	11,39	$\begin{array}{ c c c }\hline 11,26\\11,16\\+0,10\\\hline\end{array}$
бина (м), до которой возможно опускание северо-каспийских вод	500—600	300—400			_	до дна (750)

Примечание. В 1915 г. разрез о. Чечень — п-ов Мангышлак не выполнялся, в таблице за 1915 г. приведены данные станции 337, ближе всего расположенной к разрезу.

Таблица 108

Максимальная условная плотность морской воды на восточных мелководьях Среднего Каспия (σ_t'') и глубинной воды Дербентской котловины (σ_t) зимой

	1915 г.	1934 г.	1937 r.	1941 г.	1962 г.
σ_{t}''	10,96 ¹ 11,17 —0,21	10,921 11,09 —0,17	10,922 10,93 —0,01	11,12 ² 11,06 +0,06	$^{11,20^2}_{11,16}_{+0,04}$
можно опускание во- сточно-каспийских вод в Дербентскую котло- вину	200	250	600	дно (770)	дно (750)

Станции, расположенные у м. Суэ.
 Станции, расположенные в Казахском заливе.

Достигают ли воды с восточных мелководий глубин Каспийского моря или успевают перемешаться по пути, сказать пока нельзя, так как для этого необходимы непосредственные наблюдения. Можно лишь заметить, что, видимо, объем этих вод незначителен так же, как и их роль — поставщиков кислорода.

Величины σ_t на идентичных станциях в трех приведенных таблицах неодинаковы, однако это вполне естественно. Дело в том, что станции выполнялись не точно в том месте, где в предыдущий раз, а главное, гидрологические условия в Каспийском море от года к году сильно меняются. Однако общая картина распределения того или иного гидрологического элемента почти неизменна. Поэтому использовались как основные показатели разности плотностей, относительные величины, характерные не голько для данного года, но и для целого периода времени.

Таблица 109

Максимальная условная плотность морской воды на восточных мелководьях Южного Каспия вблизи о. Огурчинского $(\sigma_t{}''')$ и глубинной воды южнокаспийской котловины $\sigma_t{}'''$ зимой

	1915 г.	1934 г.	1941 г.	1962 г.
$\sigma_{t}^{\prime\prime\prime}$ $\sigma_{t}^{\prime\prime\prime}$ $\sigma_{t}^{\prime\prime\prime\prime}$	11,33	11,60 ¹	11,04	11,45 ²
	11,22	11,06	10,98	11,11
	0,11	0,54	0,06	0,34

¹ Имеется станция, ближе расположенная к о. Огурчинскому, но плотность воды на ней меньше 11,29.

Таким образом, можно сделать вывод, что в Северном Каспии, особенно в восточных его районах вследствие осенне-зимнего охлаждения плотность вод возрастает до величины, при которой возможно стекание их по шельфу и материковому склону до самых больших глубин моря. Причина, вызывающая более интенсивный ход этого процесса в настоящее время, скорее всего кроется в современном осолонении (а, следовательно, и в увеличении плотности) вод Северного Каспия в связи с уменьшением стока Волги.

Формирование и аэрация глубинных вод Южного Каспия происходит главным образом за счет поступления среднекаспийских вод через Апшеронский порог. Изменения газового режима южнокаспийской впадины связаны с газовым режимом в Среднем Каспии. Водообмен через порог происходил всегда, но, если раньше из средней части моря в южную поступали воды, лишь незначительно более насыщенные кислородом, чем местные, то в настоящее время в связи с улучшением аэрации глубинных вод Среднего Каспия в Южный Каспий поступают более богатые кислородом воды. Однако главной причиной изменения газового режима Южнокаспийской впадины, на наш взгляд, является увеличение глубины проникновения среднекаспийских вод в Южный Каспий. Изменения в характере водообмена вызваны тем, что в связи с проникновением охлажденных северокаспийских вод в глубинные слои Среднего Каспия температура воды там понижается. Понижается, но в меньшей мере, температура воды и в южнокаспийской впадине (Косарев, 1963). Из этого

² В таблице приведена цифра по данным рейдовых наблюдений 6/II, а на карту нанесены данные разреза, выполненного на месяц позднее и заставшего начало прогрева.

факта должно следовать, что плотность глубинных вод в Среднем Каспии увеличилась по сравнению с плотностью в Южном. Иными словами, зимой к северу от Апшеронского порога плотность воды на уровне Апшеронского желоба стала такой, которая позволяет ей распространяться до предельной глубины южнокаспийской впадины.

Нами построены схемы распределения величин σ_t вблизи Апшеронского порога для февраля 1915, 1934, 1941 и 1962 гг. (рис. 51). Для этих схем выбирались по три наиболее глубоководные станции: к северу от порога (слева), на пороге (в центре) и в южной части моря (справа). На каждой схеме выделены по две изолинии, наиболее четко показывающие для данной зимы предполагаемый путь протекания среднекаспийских вод через порог и их судьбу в южной части моря. На схеме показано, что в феврале 1915 и 1934 гг. воды из средней части моря могли опускаться в южную соответственно до глубин 180 и 300—350 м (рис. 51 a, δ), а в 1941 и в 1962 гг. (рис. 51 θ , ϵ) — до дна.

Коротко можно сказать, что улучшение аэрации глубинных вод Каспийского моря непосредственно связано с осолонением южной части Северного Каспия и с некоторыми климатическими особенностями рассматриваемого периода и что по данным 1915 и 1934 гг. предлагаемый механизм аэрации не мог быть установлен.

Ниже сделана попытка на основании наблюдений за температурой воздуха за длительный период (с конца XIX в.) и ледовитостью (с 1927 г.) показать, что не только особенностями зим 1914-15, 1933-34, 1940-41 и 1961-62 гг. объясняется сделанный вывод.

Самым серьезным возражением против репрезентативности съемок 1915, 1934, 1941 и 1962 гг. для заключения о многолетней тенденции было бы предположение, что зимы 1915 и 1934 гг. были аномально теплые, а зимы 1941 и 1962 гг. — аномально холодные. Однако если судить по средней за декабрь—январь температуре воздуха на ст. Махачкала, то зимы 1914-15 и 1961-62 гг. можно считать теплыми (отклонения от средней за 1882—1950 гг. составляют соответственно 2,6 и 3,4°), зиму 1933-34 г. — умеренно холодной (отклонение от средней — 0,9°) и зиму 1940-41 — умеренно теплой (отклонение от средней 1,1°). Ледовитость Северного Каспия в процентах за период с 1927-28 по 1961-62 гг. составила в среднем 75%, тогда как в 1933-34 она равна 44%, в 1940-41 — 71%, в 1961-62 — 56%, т. е. ниже нормы; зима 1914-15 гг. была в этом отношении умеренной. Таким образом, климатологические материалы свидетельствуют о том, что использованные данные не случайны.

Нами были подсчитаны скользящие средние по девятилетиям температуры января в Баку как показатели общеклиматических тенденций на Каспийском море. Их график (рис. 52) имеет три

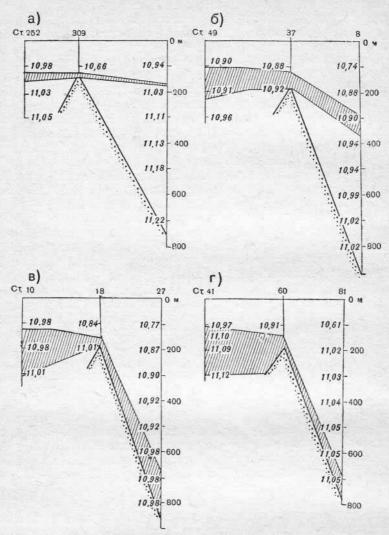


Рис. 51. Схема распределения условной плотности воды σ_t у Апшеронского порога и предполагаемый путь перетекания среднекаспийских вод в Южный Каспий в феврале. a-1915 г., b-1934 г., b-1941 г., c-1962 г.

особенности: мелкие колебания, которые вносят отдельные аномальные годы в средние величины, крупные колебания с периодом в 22 г. в XX в. (минимумы в 1913 и 1935 гг., максимумы в 1924 и 1946 гг.) и, наконец, на фоне этих колебаний — общее повышение температуры. Достаточно сказать, что до 1913 г. средние 10-летние скользящие колебались в пределах 2,4—3,4°, а с 1915 г. эти колебания были более 4°. Именно потепление зим

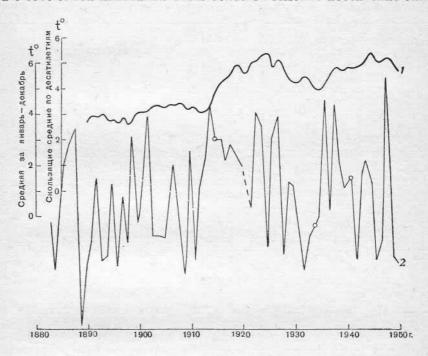


Рис. 52. Многолетние изменения температуры воздуха зимой по данным ГМС Баку (1) и ГМС Махачкала (2).

может объяснить уменьшение плотности придонных вод в котловинах Каспия, ибо только долгопериодный процесс может повлиять на термику изолированных вод, заполняющих каспийские впалины.

По мнению ряда авторов, геотермические и биохимические явления должны повышать температуру у дна, т. е. на кривой вертикального распределения температуры появляется один промежуточный минимум. Это повышение температуры дает возможность шельфовым водам в холодные зимы проникать на все большую глубину в каспийские впадины. Видимо, такой период и зафиксирован четырьмя рассматриваемыми океанографическими съемками.

Повторяемость различных типов распределения температуры (в % от общего количества наблюдений в сезоне)

	191	4-15	rr.	193	3-34	rr.	193	7-41	rr.	19	61 - 63	гг.
Район	Количество минимумов на кривой вертикального распределения температуры										ения	
	0	1	2	0	1	2	0	1	2	0	1	2
Средний Каспий	25	75	00	_	_	_	33	14	53	73	11	11
Южный Каспий	23	54	23	00	33	67	11	28	61	88	7	5

Примечание. Отобраны станции с глубиной более 600 м; большой разброс следует отнести за счет качества некоторых наблюдений в 1914—1934 гг. (пропуски горизонтов и т. п.).

Съемка 1914-15 гг. показывает наличие в Южном Каспии одного очень незначительного минимума температуры (табл. 110), определенного ориентировочно на глубине 500 м. Его предположительно можно считать результатом встречи двух тепловых потоков: от поверхности моря и от дна. Вода, поступающая из Среднего Каспия, распространяется на уровне Апшеронского по-

рога (судя по плотности).

Съемка 1934 г. застала в Южном Каспии некоторое повышение температуры воды, видимо, вследствие усиления потока тепла от поверхности моря. Минимум температуры опущен, как и следовало ожидать, глубже, практически до дна. На глубине 300-400 м появился второй минимум как следствие проникновения среднекаспийских вод. Таким образом, наблюдения в Южном Каспии, как нам кажется, отражают близкое к предельно возможному повышению температуры придонных вод, после которого порции среднекаспийских вод проникали до самого дна, ознаменовав начало понижения температуры водной массы Южного Каспия. Перестроилась и водная структура Южного Каспия, так как V дна появился «источник холода» в виде среднекаспийской воды, в то время как источник тепла остался один атмосфера (следует помнить, что средняя годовая температура воздуха над Южным Каспием в два с лишним раза выше, чем температура водной массы Южного Каспия).

В 1937—1941 гг. океанографические съемки Каспийского моря фиксируют очень важный момент: некоторые станции обнаруживают уменьшение температуры ко дну, что говорит о поступлении холодных вод до самого дна, которое перекрывает поступление тепла снизу. Таких станций в Среднем Каспии, больше чем в Южном, потому что сползание вод по склонам в эти годы только еще начиналось и за Апшеронским порогом еще не наблюдалось. И, наконец, в настоящее время поступление холод-

ных вод до дна стало господствующим явлением в обеих впадинах моря. Съемки 1961—1962 гг., выполненные наиболее тщательно, создают представление о понижении температуры ко дну (исключая промежуточные слои, связанные с вертикальной зимней циркуляцией) и общем понижении температуры морской воды.

Все сказанное здесь о Южном Каспии удалось проследить и в Среднем. Весь этот процесс в Среднем Каспии должен протекать в другой фазе, раньше на несколько лет, ибо только развившись до известного состояния, он мог вызвать соответствующую реакцию в Южном Каспии.

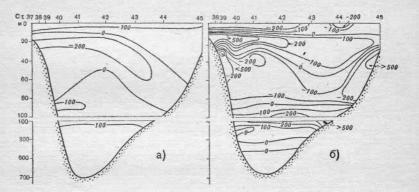


Рис. 53. Распределение вертикальной устойчивости $(E \cdot 10^8)$ в феврале на разрезе Дивичи — бухта Кендырли. a — данные 1959 г. (по Косареву), δ — данные 1962 г. (по Пахомовой).

Итак, на дно впадин Каспийского моря поступает обогащенная кислородом вода высокой плотности, что отражается на вертикальном распределении температуры и кислорода. На глубоководных станциях Среднего Каспия и на ряде станций Южного наблюдается некоторое обогащение кислородом придонного слоя. Однако оно очень незначительно и, видимо, нестабильно. Подсчет вертикальной устойчивости водных слоев показал, что глубже 200—300 м существуют благоприятные условия для перемешивания, а в некоторых случаях — и для развития конвекции, т. е. величины устойчивости или малы или отрицательны (рис. 53 и табл. 111).

Б. АКТИВНАЯ РЕАКЦИЯ РН

Под активной реакцией разумеется степень концентрации в воде водородных ионов (H·) — носителей кислотных свойств среды.

Так же, как и кислород, рН изменяется по сезонам в связи

Вертикальная устойчивость ($E \cdot 10^8$) глубинных слоев воды в Среднем и Южном Каспии

	Среднекаспи	йская впадина	Южнокаспийская впадина				
Горизонт, м	19	962	1961				
	зима, ст. 41	лето, ст. 41	зима, ст. 80	лето, ст. 90			
200 300 400 500 600 700 750 800 900	$^{+24}_{-23}$ $^{+55}_{+6}$ $^{-}_{-12}$ 0	$ \begin{array}{r} +200 \\ +8 \\ +16 \\ +12 \\ -200 \\ +42 \end{array} $	+24 +4 +6 - +2 - +4	$\begin{array}{c} +44 \\ -10 \\ +5 \\ -11 \\ -0 \end{array}$			

с разной интенсивностью биохимических и физико-химических процессов в разные сезоны года. Имеет значение и географическое положение отдельных частей моря, различных по своему щелочному режиму (устьевые области, взморье, открытая часть). Полученные результаты по определению рН сведены в виде средних и экстремальных данных по сезонам в таблицу отдельно для Среднего и Южного Каспия (табл. 112).

Величины рН колеблются в пределах от 8,52 (на поверхности) до 7,85 (у дна). По сравнению с океаном и другими морями активная реакция каспийской воды повышена, что находится, очевидно, в связи с ее большим щелочным резервом. Так, поверхностные воды океана и других морей имеют следующие средние годовые величины рН: океана — 8,3 (Харвей, 1948), Баренцева моря — 8,16 (Норина, 1965), Черного моря — 8,33 (Скопинцев, 1958), Азовского моря — 8,33 (Цурикова и Шульгина, 1964), Аральского моря — 8,29 (Блинов, 1956), средней части Каспийского моря — 8,32, южной части — 8,36 (Пахомова, 1966).

Сезонные изменения рН хорошо выражены в зоне фотосинтеза (до 50—100 м), ниже и до дна на глубоководных станциях значения рН на горизонтах мало различаются. Зимой значения рН колеблются в Среднем Каспии от 8,20 до 8,32 причем увеличиваются с запада на восток, в Южном — от 8,32 до 8,44, более высокие значения рН наблюдаются также в восточной части моря. Аналогичное распределение рН отмечено и по данным 1934 г. (Бруевич, 1937). Такое распределение соответствует температурным условиям. Повышению температуры воды зимой с севера на юг и с запада на восток соответствует увеличение значений рН. Кроме того, в южной части моря и зимой воз-

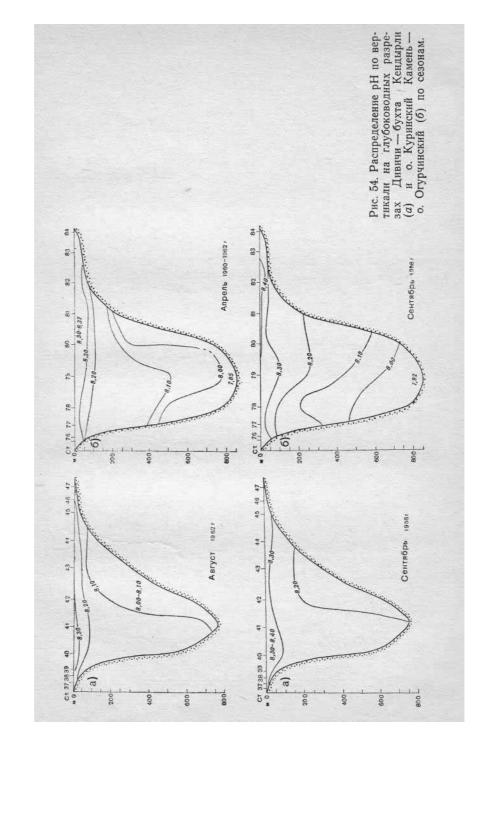
BMe	MBB.		8,24	, & & 5 & & &	8,8,8 0,1,0 0,1,0	11		8,30 8,26 8,26 8,15 17,93 7,94 7,93 7,88
Средние годовые	макс.		8888898 888888	8,8,5	8,8,8	11		8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Cpen	средн.		8,8,8,8,9					84444444444444444444444444444444444444
	мин.		8,8,8,8,9 9,18,29	8,18	8,15	1-1		8,30 8,22 8,22 8,15 1,93 7,93 7,93 7,93 7,93 7,93 7,93 7,93 7
Осень	макс.		8,8,8,8 44.3 6,36,96	8,26	8,24	11		8,47 8,34 8,31 8,31 8,31 8,33 17,97 17,97
	средн.	*	8,8,8,8,8 4,8,2,8,8	322	8,20	8,21		86.6.8.2.2.2.0.0.6.4.4.2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
CA	мин.		8,24 8,14 8,16 8,16	8,8,0	8,8%	11		8,27 8,26 8,26 8,12 17,93 17,93 17,90 17,90 17,90
Лето	макс.	спий	8,45	8,18	8,88	11	спий	8, 23, 40 8, 8, 8, 8, 24, 40 8, 8, 8, 8, 24, 40 8, 02, 11, 6 8, 02, 02, 8 8, 02, 02, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
	средн.	Средний Каспий	8,38	8,14	8,8,8 25,52	8,81	Южный Каспий	2, 29, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
8	мин.	Cpe	8,8,8,8	0,8,8	8,10	11	Юж	8,32 1,32 8,028 8,028 1,94 1,94 1,94
Весна	макс,		8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9	* 8 8 8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8	8,15	11		8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
	средн.		82888	8,00	8,13	8,11		828888888888777877 4288888277478888888
	мин.		8,8,8,8,8	8,12	8,8,8 90,98			8,32 1,32 1,33 1,34 1,35 1,35 1,35 1,35 1,35 1,35 1,35 1,35
Зима	макс.		8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9	8,22	2,8,8	311		4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
	средн.		88,32					85,88,88,88,89,77,795,000,000,000,000,000,000,000,000,000,0
Горизонт.	W		00888	388	002.400 0000	750		000000000000000000000000000000000000000

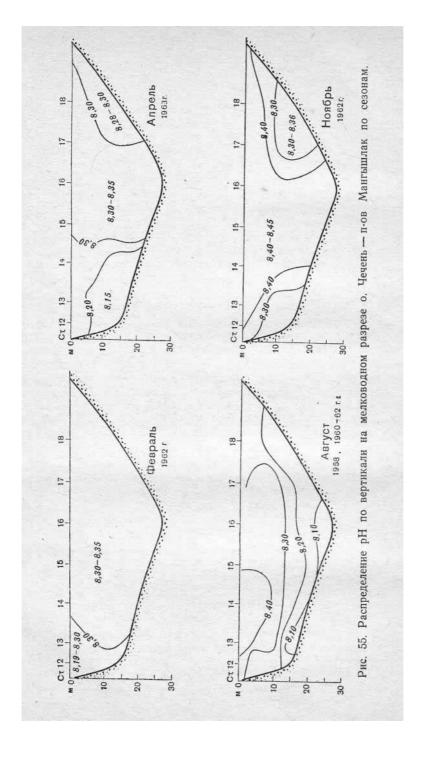
можна, хотя и в слабой степени, жизнедеятельность фитопланк-

тона, т. е. потребление СО2.

В теплый период года, наоборот, более высокие значения рН встречаются в западной части моря. В Среднем Каспии особенно высокие значения рН (в среднем до 8,45) наблюдаются в районе пограничном с северной частью моря, преимущественно на западе, где в это время года наиболее интенсивно протекают биохимические процессы с усиленным расходом углекислоты. В восточной части Среднего Каспия отмечены пониженные значения рН летом, что объясняется выходом на поверхность холодных глубинных вод. В южной части моря повышение значений рН на западе связано с влиянием здесь куринских вод. Несколько пониженные значения рН в восточной части и особенно в юго-восточном мелководном районе являются результатом процесса осаждения карбоната кальция в условиях жаркого климата и испарения с поверхности моря.

Распределение рН у дна почти не меняется по сезонам. Самые низкие значения рН отмечены во впадинах: зимой в Среднем Каспии — 8,06 и в Южном — 7,93, летом они немного выше


и в среднем равны соответственно 8,12 и 8,00.


Вертикальный ход рН представлен на профилях (рис. 54) глубоководных разрезов о. Дивичи — бухта Кендырли (район Дербентской котловины) и о. Куринский Камень — о. Огурчинский (южнокаспийская впадина). На рисунках четко выделяется уменьшение рН по вертикали. Ход изолиний показывает особенности режима рН в отдельных районах моря. Так, на летнем профиле разреза о. Дивичи — бухта Кендырли четко выделился восточный склон с низкими значениями рН вследствие поднятия глубинных вод на поверхность. Остаточные явления этого процесса прослеживаются и в сентябре. На летнем и осеннем профилях разреза о. Куринский Камень — о. Огурчинский видно поднятие летом и опускание осенью изолиний низких значений рН на востоке, что связано с другим процессом — хемогенным выпадением СаСО3 в осадок и нарушением системы карбонатного равновесия.

Вертикальное распределение рН на мелководье в районе между северной и средней частями моря (разрез о. Чечень — п-ов Мангышлак) представляется в следующем виде. Зимой в условиях энергичной вертикальной циркуляции происходит перемешивание вод до дна и как следствие этого образуется однородная вода по значениям активной реакции всей толщи воды; рН равно 8,30—8,35. С потеплением начинает развиваться фотосинтез, значения рН повышаются и летом в слое 0—10 м достигают 8,40. Особенно сильное цветение фитопланктона происходит в опресненных волжским стоком водах западного района

(рис. 55).

Интересно сопоставление результатов исследования послед-

них лет с прежними. Для сравнения взяты средние годовые данные 1934 г. (табл. 113). Как в холодное, так и в теплое время года в Среднем и Южном Каспии наблюдается повышение значений рН за исключением верхнего слоя 0—25 м, в котором летом отмечены более низкие значения рН, чем были раньше. Разница в величинах рН в разные годы больше на глубинных горизонтах, что свидетельствует о меньшем содержании сейчас свободной углекислоты на глубинах. Это изменение в режиме рН полностью соответствует распределению кислорода. Разность изменений рН по вертикали уменьшилась почти в два раза (табл. 113), что говорит о более равномерной по всей толще активной реакции воды.

Таблица 113 Средние величины и сезонные разницы рН в разные периоды

		Зима			Лето		Сре	дние годо	вые
Горизонт, м	1960—62	1934	сезонная разница	1960—62	1934	сезонная разница	1960—62	1934	сезонная разница
			Средн	ий Кас	пий				
0 10 25 50 100 200 400 600	8,30 8,32 8,32 8,27 8,22 8,17 8,08 8,05	8,26 8,24 8,23 8,21 8,16 8,07 7,98 7,83	0,04 0,08 0,09 0,06 0,06 0,10 0,10 0,22	8,36 8,34 8,21 8,20 8,19 8,14 8,13 8,12	8,41 8,41 8,35 8,13 8,12 8,01 7,86 7,81	-0,05 -0,07 -0,14 0,07 0,07 0,13 0,27 0,31	8,21 8,17 8,14 8,13	8,14 8,04 7,92 7,82	- - 0,07 0,13 0,22 0,31
Разность изменений	0,27	0,43		0,22	0,60				
			Южн	ый Кас	пий				
0 10 25 50 100 200 400 600 800	8,38 8,34 8,34 8,23 8,07 7,95 7,93 7,99	8,35 8,34 8,32 8,29 8,21 8,07 7,85 7,76 7,73	0,03 0,02 0,05 0,02 0 0,10 0,17 0,26	8,35 8,33 8,33 8,30 8,17 8,05 7,98 7,96 7,93	8,44 8,45 8,42 8,22 8,09 8,00 7,90 7,81 7,74	-0,09 -0,12 -0,09 0,08 0,08 0,05 0,08 0,15 0,19	8,21 8,04 7,98 7,97	7,78	0,0 0,0 0,1 0,1 0,2
Разность изме-	0,45	0,62		0,42	0,70			.,	
			Апшер	онский	порог				
0 10 25 50 100	8,33 8,34 8,33 8,32 8,29	8,31 8,29 8,26 8,22 8,14	0,02 0,05 0,07 0,10 0,15	8,33 8,33 8,28 8,24 8,16	8,44 8,44 8,28 8,21 8,16	$\begin{bmatrix} -0,11 \\ -0,11 \\ 0 \\ 0,03 \\ 0 \end{bmatrix}$			

Содержание кислорода и степень концентрации водородных ионов находятся в обратной зависимости. В фотосинтетической зоне углекислота потребляется фитопланктоном, углерод затрачивается на построение органического вещества — глюкозы,

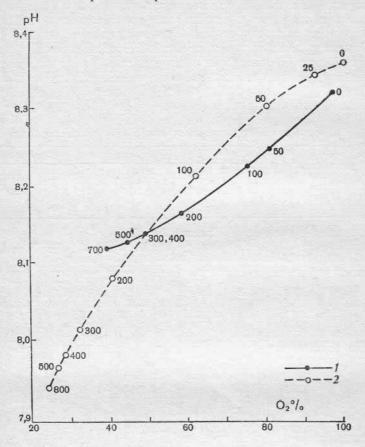


Рис. 56. Связь между кислородом и рН по глубине. t — Средний Қаспий, 2 — Южный Каспий.

а кислород освобождается и накапливается в воде. Ниже зоны фотосинтеза идет обратный процесс — минерализация и окисление органического вещества, на что расходуется кислород и выделяется углерод. На какой-то различной по физико-химическим и метеорологическим условиям глубине процессы образования органического вещества и его разложения становятся одинаковыми. Ниже по глубине превалирует постепенное (если нет нарушающих факторов) убывание кислорода (и величин рН) и возрастание свободного СО₂ (и концентрации ионов Н.).

Таким образом, можно сказать, что существует определенная закономерная связь между величинами кислорода и рН в морской воде, подтверждаемая эмпирически найденными по материалам наблюдений 1958—1963 гг. соотношениями (рис. 56).

в. давление двуокиси углерода

Угольная кислота служит источником углерода при построении первичного вещества и характеризует интенсивность протекающих в воде окислительно-восстановительных процессов. Являясь одним из звеньев карбонатно-кальциевого равновесия, угольная кислота определяет процессы осаждения и растворения

карбонатов и характеризует агрессивные свойства воды.

Парциальное давление двуокиси углерода (рСО2) в Каспийском море впервые было вычислено в 1933 г. Бруевичем на основе средних величин щелочности и активной реакции (рН) для поверхностной воды в августе. Расчет производился по методике, разработанной Бухом и др. для воды океанского состава (1932). Давление двуокиси углерода в Южном Каспии оказалось равным 4,4 · 10-4 атм. В 1934 г. Бруевич снова вычислил давление двуокиси углерода на поверхности для лета и зимы в Южном и Среднем Каспии, причем значения рН принимались не средние для разреза, а наиболее характерные. Для Южного Каспия значение рН принималось равным 8,42 для лета и 8,44 для зимы; для Среднего Каспия оно равно 8,39 для лета и 8,31 для зимы. Щелочность вычислялась по среднему значению щелочно-хлорного коэффициента. Для Среднего Каспия для зимы и лета принималась щелочность, равная 3,60 мг-экв/л; для Южного Каспия для лета — 3,64 мг-экв/л, для зимы — 3,56 мг-экв/л. Вычисленные по этим данным значения давления двуокиси углерода оказались равными в Среднем Каспии 4,5 · 10-4 для зимы и 4,3 · 10-4 атм. для лета, а в Южном Каспии соответственно 3,2 · 10-4 и 4.0 · 10-4 arm.

Данные Бруевича, очевидно, несколько завышены, так как при расчете использовались таблицы Буха, составленные для океанских вод, а поправка на ионную силу каспийской воды не вводилась.

Материалы и методика исследований

Для вычисления парциального давления двуокиси углерода в Каспийском море нами использованы наблюдения по щелочности и рН, полученные в экспедициях ГОИНа и Бакинской ГМО на стандартных разрезах в 1959—1962 гг.

Вычисления давления двуокиси углерода производились со-

гласно методике Буха по формуле

$$pCO_2 = pC - pH + \log Alk_{\kappa} - \log K_{HCO'_3}$$
.

По этой же методике рассчитывалась концентрация ионов HCO_3' и CO_3'' . Методика расчета подробно изложена в работах С. В. Бруевича (1933), Л. К. Блинова (1956), Е. Н. Черновской (1962). При подсчете давления двуокиси углерода и ее форм использовались таблицы Буха, расширенные путем интерполяции сотрудником ГОИНа А. П. Цуриковой и сотрудниками ЛО ГОИНа А. Г. Буйневич, М. Э. Кудрявцевой и Е. Н. Черновской.

Так как вода Каспийского моря по ионному составу значительно отличается от океанской, то при пользовании таблицами Буха в результатах вычислений возможны погрешности. Для избежания этих погрешностей в данные введены поправки на ионную силу вод Каспийского моря. Ионная сила μ раствора, как известно, равна произведению полусуммы молярных концентраций всех ионов, находящихся в растворе c, на квадрат их валент-

ности z, т. е. $\mu = \frac{1}{2} \Sigma cz^2$. Следовательно, раствор с большим со-

держанием двухвалентных ионов будет обладать и большей ионной силой. Поэтому при одной и той же солености Каспийская вода будет иметь ионную силу больше, чем океанская.

Таблица 114
Процентный состав, молярные концентрации и ионная сила μ вод Каспийского моря с соленостью 1%0

Ионы	%	моли	моль • z ²	Ионы	%	моли	моль · z ² 2
Cl'	41,70	0,01175	0,00587	Ca"	2,60	0,00065	0,00130
Br'	0,05	0,00001	0,00000	Mg"	5,77	0,00237	0,00474
SO"4	23,69	0,00247	0,00494	Na'	24,61	0,01070	0,00535
CO3"	0,78	0,00013	0,00026	K'	0,78	0,00020	0,00010

 $\mu = 0,02256$

Результаты вычислений ионной силы вод Каспийского моря с соленостью 1% приведены в табл. 114. Следовательно, ионная сила μ для каспийской воды по солености равна 0,0226 S%. Принимая хлорный коэффициент каспийской воды равным 2,38, получим выражение для ионной силы по хлорности μ =0,053C1%. Для океанской воды μ ≈0,020S% или μ =0,036C1%.

Пользуясь коэффициентами пересчета, которые найдены из соотношения ионных сил вод Каспийского моря и океана, приводим хлорность и соленость каспийской воды к океанской. Для хлорности этот коэффициент равен 1,47, для солености — 1,12.

Расчет насыщенности воды карбонатом кальция производился по формуле

$$\frac{[\operatorname{Ca"}][\operatorname{CO}_3''](f'')^2}{S_{\operatorname{CaCO}}} = S' | S_{t^\circ}.$$

Коэффициенты активности ионов кальция и карбонатов заимствованы из работ Ваттенберга (1933), Ваттенберга и Тиммермана (1936). При вычислении степени насыщенности карбонатом кальция воды с хлорностью меньше 1‰ коэффициенты активности вычислялись по формуле (Алекин, 1954).

$$\log f = \frac{-0.5z^2 \sqrt{\mu}}{1 + \sqrt{\mu}},$$

где f — коэффициент активности иона, z — валентность иона, μ — ионная сила исследуемой воды. Коэффициенты, рассчитанные по этой формуле, приведены в табл. 115.

Tаблица 115 Коэффициенты активности f (HCO $_3$ ', CO $_3$ ", Ca") при различной ионной силе μ

Clº/00	μ	f HCO _a '	f CO ₃ ", f Ca"	C10/00	μ	f HCO3'	f CO ₃ " f Ca"
0,05	0,001	0,97	0,89	0,60	0,015	0,89	0,61
0,10	0,002	0,95	0,81	0,70	0,017	0,88	0,59
0,20	0,005	0,93	0,75	0,80	0,020	0,87	0,57
0,30	0,008	0,91	0,69	0,90	0,022	0,86	0,55
0,40	0,010	0,90	0,66	1,00	0,025	0,85	0,53
0,50	0,013	0,89	0,63				

Распределение величин давления двуокиси углерода

Вычисленные средние величины pCO_2 для наиболее характерных районов приведены в табл. 116. Поскольку средние летние значения pCO_2 , полученные по наиболее многочисленным и систематическим наблюдениям наиболее надежны, они и приняты для сравнительной характеристики районов.

Из табл. 116 видно, что в средней и южной частях Каспийского моря летом значения р CO_2 одинаковы, 4,5—4,6 \cdot 10^{-4} атм.

на поверхности и 6,4—8,8 · 10⁴- атм. у дна.

Средние величины давления двуокиси углерода в Каспийском море во все сезоны года, выше, чем в атмосфере. Средняя величина давления двуокиси углерода по полученным данным колеблется в пределах $4.8-5.4\cdot10^{-4}$ атм. в северной части моря, $3.5-9.2\cdot10^{-4}$ атм. в средней и $3.5-10.1\cdot10^{-4}$ атм. в южной части моря (табл. 116). На поверхности несколько повышенное парциальное давление двуокиси углерода наблюдается летом у восточного побережья Средней части Каспийского моря. Поверхностное и придонное распределение средних величин р QO_2 прдеставлено на рис. 57—59.

	r/rm 20			7,7,6	11											
E CO.	,,°00			ででででで.44400000000000 でである-8400ド40000	6,0 6,0											
процентах от	нсо,"									28.89.89.89.89.89.89.89.89.89.89.89.89.89	8,66 8,68					
В про	°CO3														0,0	
801 · r.\dr.	т СО₃ г/мо				2, 2, 2, 2, 3, 4, 3,											
8-01·1/4	СО ³ , 1-мол	L												0,27		
6-01 · r.\arc	НСО ³ , г-жо	.a	ий		3,09											
9-01.1/	CO ₂ T-Moль	евраль ний Касп	Средний Каспий		27,2											
.MTB	PCO3 · 10—4	Φ	Сред	100 999988899999999999999999999999999999	4,1											
w)	даже-экв. А <i>11</i> к мг-экв.				Bocrous	3,51										
СР ⁰ / ₀₀ (привеленный)	Hd														8,34	
				2,01												
																88844444444444444444444444444444444444
	o <u>.</u>			888467708684484444 888467708888484484	6,4											
1	горизонт,			10 10 10 10 10 10 10 10 10 10 10 10 10 1	0											

	7,7,6,6,6,6,6,7,113,2,0,2,4,6,6,4,9,7,4,6,6,6,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6			7,7,7,7,3,3,7,7,7,3,3,7,7,7,3,3,3,3,9,4,5,3,9,4,3,5,9,7,5,9,7,5,		1-1
	ααναρτ44ωωωυωονρουνανα44ον			0000004444600 		6,6
	24,109 99 99 99 11,109 99 99 99 99 11,109 99 99 99 99 11,109 99 99 99 11,109 99 99 11,109 99 11,			7,29 92,20 93,20 7,7,8 9,44 9,44 9,45 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1		92,8
	00000001111111			000000111111		9,0
	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,			6,6,6,6,6,6,6,6,6,6,6,4,7,7,7,7,7,7,7,7,		3,32
	82288888888888888888888888888888888888			0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Каспия	0,22
иии	0.000.000.000.000.000.000.000.000.000.		пий	99999999999999999999999999999999999999		3,08
Ожный цаспии	7,71 118,70 10,00	прель	Средний Каспий	0,122,223,83,83,83,83,83,83,83,83,83,83,83,83,83	Зосточное побережье Среднего	21,7
2	8,8,8,4,4,0,0,0,0 8,8,6,4,4,0,0,0,0,0 1,0,0,0,0,0,0,0,0 1,0,0,0,0,0,0,0,0	A	Сред	444400000000 0000000000000000000000000	ое побер	4,4
	88888888888888 			8448888468888	Восточн	3,52
	8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,			%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%		8,32
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			2,7,7,7,7,7,7,7,7,9,8,9,9,9,9,9,9,9,9,9,9		7,76
	50000000000000000000000000000000000000			88888888999999999999999999999999999999		5,28
	24,54,54,54,54,54,54,54,54,54,54,54,54,54			10, 32 9,87 7,48 6,70 6,70 6,70 4,68 4,68 4,23		10,5
	0 10 25 50 75 100 100 100 200 200 200 200 200 200 200			25000000000000000000000000000000000000		Опр

	n/nm gO		2,2,2,3,3,5,6,6,8,8,8,8,3,1,2,4,4,7,7,4,4,7,7,4,4,7,7,7,7,4,7	7,21	11			5,64
B CO ₂	CO3"		たてためので446000めるどびがイイをあがびが	0,0	5,0			8,7 8,7 4,6 4,6
процентах от	нсо³,		2,292,292,292,292,292,292,292,292,292,2		94,8			89,8 90,7 96,5
В про	cO ₂		000000000000000000000000000000000000000	1,0	0,7			4,0 0,0 7,0 0,9
Z СО ₃ г-моль/л·10—3			88888884488		3,10			3,14 3,21 3,48
CO3" T-MOJB/JI-10-3			8848810,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0,11	0,14 0,16			0,31 0,28 0,22 0,16
HCO ² , L-WO'IP\11·10—3		ий	61988190888188	, 50 THU	2,94		пий	2,82 2,91 3,15 3,29
CO ₂ r-Monb/n·10-6		Южный Каспий	7,71 18,17 19,10 10 10 10 10 10 10 10 10 10 10 10 10 1	7,4 50,4 5,4	23,0 24,6	Август	Средний Каспий	14,1 16,9 24,4 32,5
рСО₂•10—4 атм.		Юж	880101010 880101010	LO,4	5,4	A	Сред	2,50
А12 мг-экв/л			დ. დ. დ. დ. დ. დ. დ. დ. დ. დ. 1979 1979 1979 1979 1979 1979 1979 1979		3,22			3,44 3,47 3,59 3,61
Нф			8,8,8,8,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	7,98	8,31			8,37 8,25 8,25 8,20
СР/00 (приведенный)			8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	7,91	3,81			7,66 7,67 7,89 7,94
CP/00			%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%		2,59			5,21 5,22 5,37 5,40
٠,			12,44 10,39 10,39 10,39 10,39 10,97 10,61	5,79	15,7			24,64 23,75 14,68 7,29
	Горизоит, м		100 250 250 1100 200 200 200 500 500	750	0 онд			0 10 50 50

1		004446469 000000000000000000000000000000		11		2,4,2,6,6,6,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	
6,6		∞౧ౖఄఄ౮ౖఄఄఛౖ౪ౖ౪ౖ౪ ∞ఄ౼ఀ∞౮ౖఄఄ౪ఀఀఀఀఀ౿ఀఀ		6,5		2,4,6,6,4, 2,2,8,8,6,1,	
92,8		91,8 93,2 94,4 95,0 95,0		92,8		94,5 95,1 95,1 94,9	94,3 94,5 95,0 95,1
9,0	 	4,000,111,1 4,7,8,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	3.7	0,7		-0-1-1-0,	0,00011
2,89		3,23,29 3,65,23,41 6,65,23 6,65,23		3,35		3,67 11,67 11,00 10 10 10 10 10 10 10 10 10 10 10 10 1	
0,19	0,000	0,29 0,22 0,17 0,14 1,14 13		0,22 0,17	Каспия	0,00 0,10 0,14 0,15 1,15 1,15 1,15 1,15 1,15 1,15 1,15	0,15 0,15 0,14 0,14
лий 2,68	3,46	6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,		3,11	Среднего К	2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6	
Северный Каспий (15,8 16,0 2,15,7 3,15,7		24,27,24,48,6,7,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1	100	23,8 33,1	ежее Ср	24.24.24.06 0.7.0.24.0,	35,2 35,0 35,6 41,1 42,6
Cesep		400000118 00404011	Южный	6,5	ое побережье	4,1,7,6,9,6,9,4,9,4,9,4,9,4,9,9,9,9,9,9,9,9,9	6,00
3,06		e, e		3,56	Восточное	6.5.7.7.2.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	
8,36	8,05 8,07 8,07 8,07	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8,22 8,16		x, x	8,88,89 8,13 12 12 12 13
4,31		7,7,89 7,7,94 7,91 7,91 7,91		7,85		7,782	
2,93		, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,		5,34		5,37 5,31 5,31 5,31	
24,4	5,93 6,10 5,83 5,81	20,20 10,78 7,78 6,69 6,34 6,34 6,34 6,34		20,5		4,5,5,6,4,4,4,2,6,4,4,2,4,2,4,2,4,2,4,2,4,2,4	
0	400 500 600 700 750	88588888888888888888888888888888888888		0 дно		7200 7200 7200 7200 7200 7200	150 200 250 250

Восточное мелководье по своим физико-химическим характеристикам занимает несколько обособленное положение в Каспийском море. Здесь летом отмечаются пониженные температуры по сравнению с температурой прилегающих районов, повышенная соленость, повышенное содержание карбонатов в донных отложениях и отсутствует речной сток.

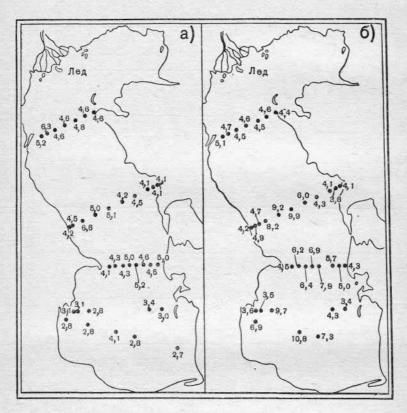


Рис. 57. Распределение средних величин давления двуокиси углерода р ${
m CO_2 \cdot 10^{-4}}$ атм. в феврале. a- поверхность, 6- дно.

Известно, что донные отложения, богатые карбонатами, служат центрами кристаллизации углекислого кальция, особенно в мелководных районах, в связи со свободным соприкосновением всей толщи воды с грунтом.

В северной части Каспийского моря наибольших значений парциальное давление двуокиси углерода достигает весной в период наибольшего стока Волги, когда с паводковыми водами

вносится большое количество органического вещества. При этом вода обогащается угольной кислотой, а количество фитопланктона еще невелико. По данным П. И. Усачева (1948), наиболь-

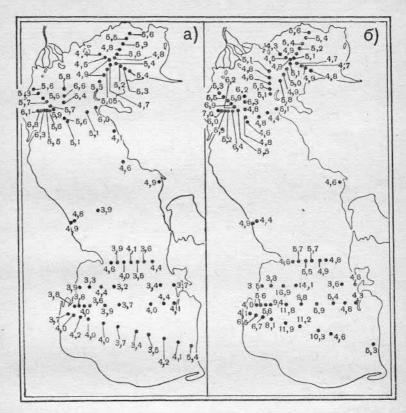


Рис. 58. Распределение средних величин давления двуокиси углерода р $\mathrm{CO}_2 \cdot 10^{-4}$ атм. в апреле. a — поверхность, δ — дво.

шие титры фитопланктона в северной части Каспийского моря отмечаются летом (табл. 117).

Таблица 117 Сезонные титры фитопланктона (по Усачеву)

Район моря	Весна	Лето "	Осень		
Северный	1,0	3,5	2,5		
	1,5	0,3	0,5		
	0,5	0,5	0,5		

Наибольшие колебания давления двуокиси углерода в Северном Каспии наблюдаются в его западном районе. Эти колебания являются, по-видимому, результатом суточного хода. Отмечено, что наибольшее давление двуокиси углерода, как правило, бы-

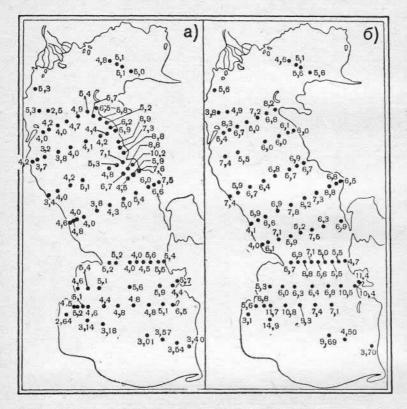


Рис. 59. Распределение средних величин давления двуокиси углерода р $\mathrm{CO_2} \cdot 10^{-4}$ атм. в августе. a- поверхность, $\delta-$ дно.

вает в ночные и утренние часы, когда прекращается фотосинтез и уменьшается расход двуокиси углерода.

В северной части моря вследствие хорошего перемешивания больших изменений величин рСО₂ по вертикали не наблюдается. На рис. 60 и 61 видно, что общая закономерность изменения давления двуокиси углерода с глубиной остается характерной для всех сезонов. В деятельном слое распределение рСО₂ определяется вертикальной циркуляцией. По наблюдениям за 1959—1962 гг. в южной части Каспийского моря зимой наименьшие градиенты рСО₂ отмечаются до глубины 70 м. По сведениям по-

следних лет, эта глубина служит границей зимней вертикальной циркуляции. По Косареву (1963а), зимняя вертикальная циркуляция в южной части моря достигает 80-100 м. Весной и летом граница минимальных градиентов pCO_2 опускается до 80 м. Ниже 100 м градиенты давления двуокиси углерода резко возрастают. Наряду с повышением pCO_2 уменьшается и содержание

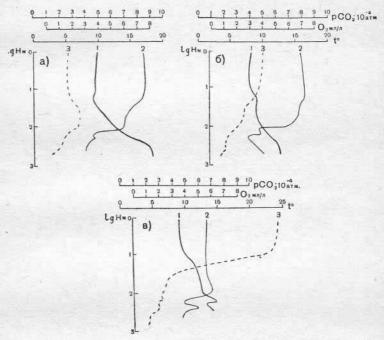


Рис. 60 Вертикальное распределение величин рСО $_2 \cdot 10^{-4}$ атм. (1), кислорода (2) и температуры (3) в Среднем Каспии. a — февраль, δ — апрель, θ — август.

кислорода. Такое распределение кислорода и давления двуокиси углерода позволяет предположить, что наиболее интенсивно процессы минерализации органического вещества в южной части Каспийского моря происходят в слое 70—200 м.

В средней части Каспийского моря изменение давления двуокиси углерода по глубине имеет аналогичный характер. Здесь до глубины 100 м градиенты рСО₂ невелики. Основное накопление двуокиси углерода за счет минерализации органического вещества происходит в слое 100—300 м.

В придонных слоях южной и средней частей Каспийского моря давление двуокиси углерода очень различно и колеблется от $2 \cdot 10^{-4}$ до $16 \cdot 10^{-4}$ атм., причем наименьшие значения рСО₂,

 $2\cdot 10^{-4}$ — $5\cdot 10^{-4}$ атм., наблюдаются в мелководных районах, где накоплению двуокиси углерода препятствует хорошая вентиляция придонных слоев. В глубоководных районах давление двуокиси углерода увеличивается до $8\cdot 10^{-4}$ — $16\cdot 10^{4-}$ атм. Средние величины рСО $_2$ у дна приведены в табл. 118.



Рис. 61. Вертикальное распределение величин рСО $_2\cdot 10^{-4}$ атм. (1), кислорода (2) и температуры (3) в Южном Каспии. a — февраль, b — апрель, b — август.

Понижение парциального давления угольной кислоты за счет интенсивно развивающегося фитопланктона отмечались Цуриковой (1962) в весеннее и осеннее время в Азовском море (до 1,9·10-4—2,7·10-4 атм.) и Черновской (1962) в весеннее время в Балтийском море (до 2,3·10-4 атм.). Максимальные значения парциального давления двуокиси углерода в Азовском море наблюдались летом и зимой, в Балтийском море — зимой. Вычисленное Блиновым (1956) среднее давление двуокиси углерода для поверхностного слоя Аральского моря составляет 4,0××10-4 атм. Наибольшие значения рСО2 в Аральском море наблюдаются весной.

В Каспийском море давление двуокиси углерода чаще всего увеличивается от зимы к лету. Небольшое повышение

Tаблица 118 Средние величины р ${
m CO}_2$. 10-4 атм. на поверхности и у дна

		Повер	хность	Дно							
Район моря	зима	весна	лето	среднее	зима	весна	лето	среднее			
Южный	3,21 3,5	3,8	4,01 4,6	4,0	6,2	6,2	7,0	6,5			
Средний	4,51 5,0	4,2	4,31 4,5	4,6	5,3	4,9	6,8	5,7			
Восточное побережье средней части моря	4,8	4,4 5,4	6,5 4,8	5,2 5,1	3,9	4,5 5,4	7,0 5,2	5,1 5,3			

¹ Данные С. В. Бруевича.

рСО₂ зимой отмечалось в средней части моря. Средняя часть Каспийского моря по сравнению с южной частью характеризуется наиболее развитой конвекцией. В глубоководных районах конвекция достигает 200 м, а в глубоководных районах южной части — только 80—100 м (Косарев, 1963). Выше указывалось, что основное накопление двуокиси углерода в средней части происходит в слое 100—300 м. Повышение рСО₂ в поверхностном слое может происходит и за счет подъема двуокиси углерода из нижележащих слоев.

Понижение давления двуокиси углерода под влиянием усиления деятельности фитопланктона в северной, самой продуктивной части Каспийского моря, наблюдается летом, а в средней части моря — весной.

Сравнение данных 1959—1962 гг. с данными Бруевича 1933 г. (табл. 118) показало, что в поверхностных водах Каспийского моря увеличилось парциальное давление двуокиси углерода. Выше указывалось, что в последние годы в Каспийском море наблюдается увеличение кислорода в придонных слоях и улучшение их вентиляции. Возможно, что увеличение давления двуокиси углерода в поверхностном слое является результатом усилившейся вентиляции. Судить об изменении давления двуокиси углерода в придонных слоях не представляется возможным, так как раньше определения рСО₂ в Каспийском море не проводились.

Насыщенность вод Каспийского моря карбонатом кальция

Материалом для вычисления степени насыщенности вод северной части Каспийского моря карбонатом кальция послужили наблюдения, собранные Астраханской ГМО в апреле, июне, июле

1963 г. (рис. 4). Осенью наблюдения производились только в районе о. Искусственного и у Волго-Каспийского плавучего маяка. Для средней и южной частей Каспийского моря использованы специально собранные и обработанные на судне материалы во время съемки в августе 1963 г. (ГОИН). Для юго-восточной части Южного Каспия (станции 93—95) взяты данные 1961 г.

По материалам наблюдений за 1963 г. (табл. 119), вода северной части Каспийского моря пересыщена карбонатом кальция в апреле—июле. Осенью и зимой наблюдения не производились. Имеются лишь единичные осенние определения кальция, проводимые около о. Искусственного и у Волго-Каспийского маяка. Расчет насыщенности вод карбонатом кальция по этим данным показал, что к октябрю степень пересыщения вод CaCO₃ у о. Искусственного падает в 8 раз, к ноябрю — в 12 раз. У Волго-Каспийского плавучего маяка в это же время наблюдается недосыщение вод CaCO₃ (0,87 в октябре и 0,74 в ноябре).

В восточной части взморья отмечалось довольно равномерное насыщение воды $CaCO_3$. Весной в этом районе насыщение было близко к равновесному (1,1-1,3), летом — увеличивалось

в 3-4 раза.

Интересно проследить изменение степени пересыщения вод $CaCO_3$ на третьем и втором разрезах, расположенных в районе смешения пресных волжских вод с морской. Весной, когда сток Волги еще невелик, изменения в степени насыщения вод карбонатом кальция от устья к югу лишь намечаются. Летом, в период половодья и после его пика, колебания выражены отчетливо.

В период наблюдений вода Волги была недосыщена карбонатом кальция. Весной степень насыщения реки СаСО3 равнялась 0,47, летом — 0,8. При смешении пресных волжских вод с северо-каспийской водой насыщенность СаСО3 сначала растет. Максимальных значений насыщенность вод СаСО3 достигает на станциях 19-20 и 11-12 (рис. 62 и 4). Начиная с 19-й станции к югу до района свала глубин, содержание хлора и щелочность увеличиваются, величина рН уменьшается. С увеличением солености степень пересыщения вод СаСО3 уменьшается с 8,8 (июнь) и 9,9 (июль) на ст. 19 до 1,6 (июль) и 2,1 (июль) на станциях 22 и 21. Резкий скачок в величинах насыщения вод СаСО₃ между 19-й и 20-й станциями объясняется различием в методиках подсчета насыщенности воды карбонатом кальция. Нами была вычислена насыщенность вод СаСО3 на станциях с содержанием хлора 1,13 и 1,10‰ (по речной и морской методике). Результаты показали, что степень насыщенности СаСО₃, вычисленная по речной методике, приблизительно в 5 раз выше вычисленной по морской методике (Ксасоз, по Алекину, равно 4,32, а по Ваттенбергу, — 51,0).

В районе свала глубин, который является зоной смешения

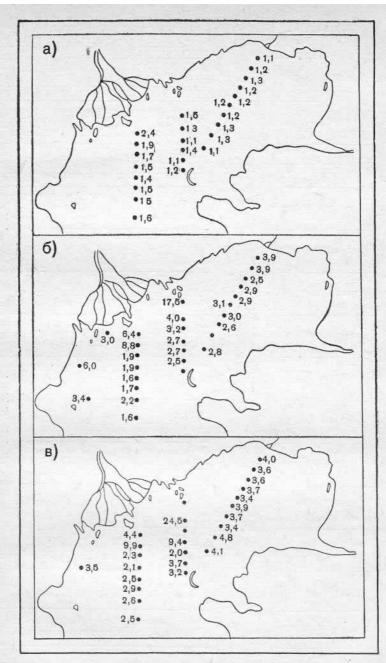


Рис. 62. Насыщенность вод северной части моря карбонатами кальция. $a-\text{апрель},\ \, \delta-\text{нюнь}-\text{нюль},\ \, s-\text{август}.$

ya 119		500				00000000000000000000000000000000000000
Таблица	в % Σсоз	CO3"				6,0,0,0,4,0,0,0,4,0,0,0,0,0,4,0,0,0,0,4,0
кальция		нсо³,				\$6888888888888888888888888888888888888
онатом	"EO3")\\.				480688888888888888888888888888888888888
ря карб	6-01 · n/dn	∑СО ₂ г-мо.				9,5524 9,5524
ского мо	9-01 - 11/4	СО3 г-молн	ья			92299999999999999999999999999999999999
насыщенность вод Каспийского моря карбонатом кальция	•мтв 1-	-01 · 200q	Северная часть Каспийского моря	Г.	I	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
сть вод	8-01 · r/dr	СО3" Г-МО	Каспий	Апрель, 1963	h paspes	
ыщенно	8-01	L-MOJP/J ·	зя часть	Апрел	Вековой	99999999999999999999999999999999999999
z	8-01 · n/«	Ca" r-woar	Северия			4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
кислоты	W/8	Ч1 р мг-экг				00 10 10 10 10 10 10 10 10 10 10 10 10 1
	2	I				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Формы угольной	0.00	Š				60000000000000000000000000000000000000
Ф	Q					111 12,000 888 877777 88 80 00 01 60 00 00 00 00 00 00 00 00 00 00 00 00 0
	W	тноемфо1				0404040407000000000 0407000000000000000
		виливтЭ				1 2 3 7 7 7 10 9 9

	0,00 77,00 7		0,72	0,0	0,75	0,74	0,73	0,76	0,0	0,75	0,65	0,74	0,74	0,75	0,67	0,00	00,00	0,0	0,10	2,5	0,99
	6.4.6.6.0.0.0.4.0.0 8.8.6.6.0.0.0.4.0.0 8.8.6.6.0.0.0.4.0.0 8.8.6.0.0.0.0.4.0.0 8.8.6.0.0.0.0.0.0.0.0.0.0 8.8.6.0.0.0.0.0.0.0.0.0.0.0.0 8.8.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 8.8.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.							5,60													
	98, 99, 98, 98, 98, 98, 98, 98, 98, 98,							93,64													
	47,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1		2,38	3,6	1.88	1,66	2,06	1,46	3.53	1,28	1,67	1,53	1,39	33.	2,50	40,1	1,50	1,00	1,03	10,0	1,00
	3,156 2,072 2,959 3,569 3,569 3,569 3,569 3,574 3,584							3,397													
	28,23 28,53							26,00													
П	74.00.00.00.00.00.00.00.00.00.00.00.00.00	111	3,86																		
й разрез	00000000000	paspes	0,11	0,11	0.11	0,15	0,18	0,19	0,70	0,20	0,23	0,23	0,21	0,21	0,23	0,24	3,0	2,00	0,0	0,71	0,16
Вековой	2,3,2,2,2,008 2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	Вековой	2,586																		
	2,0,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		4,24					7,98													
	248 248 248 248 248 248 248 248 248 248		2,799																		
	xxxxxxxxxxxxxx 2425222227722		8,41																		
	20000000000000000000000000000000000000		1,56	1,88				4,47													
	101 10,01 10,00 10		11,1	10,8	10,8	10,6	9,01	χ.α 21.0	6,6	9,9	6,3	6,7	7,0	0,0	0,9	0,4	7.9	1.1	1,0	, r.c.	5,6
			0,5	0,5	2,8	0,5	0,0	0,0	0,2	5,0	10,0	0,0	0,0	0,0	o, r.	1,0	0,0	, ic	10.0	15,0	20,0
	12 13 14 15 16 17		18	19		20		77	22			23		10	+7		95				

	°00.	2,69			0,48 0,49 0,32 0,29	0,49	6,00	44.6	0,00	0,50	0,48	
% ∑co,	", co.	0,42			7,68 7,73 10,81 11,79							
В	нсо³,	96,89		V	91,84 91,78 88,87 87,92	91,55	8,88,98 4,84,88	89,49	98,98	91,00	91,13	
" _E O	Z O∂f·•}Of	1,76			3,91 2,72 3,86 4,07	2,54	2,52,2	3,13	2,62,6	, 67, e 13, 2	2,83	
€-01 • r/d	∑СО ^в г-мол	2,345			2,866 2,846 2,866 2,798							
9-01 · m/	CO ₂ r-wolls,	ик 63,07 79,41			13,84 13,80 9,34 8,26							
.KTB 1	,_00 · 10_,	Волго-Каспийский плавучий маяк 1,92 2,272 0,01 — 6, 1,53 2,251 0,01 — 77		ı	6,6,2,2 6,83,23	4,8,0 9,95	5,0,0,0 9,0,0,0 9,0,0,0	5,4° 5,4° 5,4° 5,4° 5,4° 5,4° 5,4° 5,4°	4,13	4,38	4,28	
6-01 · n/d	СО3" г-молі	ий плаву 0,01 0,01	Июнь, 1963	i paspes	22,000							
£-0	L-MOJP\11 • I HCO³、	аспийск 2,272 2,251	Июн	Вековой	2,632 2,612 2,547 2,460							
8-01 · r/	Са. т-моль/	Boaro-K 1,92 1,53			8,41 5,96 6,44 6,44	6,01	4,44,4	7,58	7,58	6,94	7,54	
r/	аяе-ли <i>41А.</i>	2,292			3,078 3,044 3,176 3,126							
	Hď	7,92			8,8,8,8 8,5,5,8							
	CIº/00	0,04			6,6,6,6,6,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,							
	9,	10,9			8888							
,	Горизонт, м	4,0			0,000							
	виднатЭ				7 7	m -	4 73	9	× ~	6	10	

	3
	paspes
	ковои
2	Bek

0.000 0.000		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,2,6,6,7,7,8,8,9,9,9,6,2,7,8,8,13,8,11,4,9,6,7,13,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,		11111447770000 488887787788888888888888888888
997,53 997,19 997,19 997,10 997,37 997,37 997,37 997,37 997,37 997,37 997,37		997,63 997,83 997,93 907,93 90
75%, w. w. y.		4885288888816175888
0,000,000,000,000,000,000,000,000,000,		20.000
10,65 9,68 111,37 111,37 111,39 110 110 110 110 110 110 110 110 110 11		13 10 10 10 10 10 10 10 10 10 10
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	П	
9.000000000000000000000000000000000000	paspes 1	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
2,2,2,2,2,2,2,2,011 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	Вековой	2,000,000,000,000,000,000,000,000,000,0
204,600,477,780,80,80,80,80,80,80,80,80,80,80,80,80,8	-	26000000000000000000000000000000000000
22,2091 22,204 22,204 23,204 23,204 24,475 2529 2529 2529 2529		2,5622 2,
& & & & & & & & & & & & & & & & & & &		**************************************
0001116884444400000 758821001884884444		00000004440000000000000000000000000000
888888888888888888 64646488888888888888		22222222222222222222222222222222222222
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000000000000000000000000000000000000
11 12 13 14 15 16		22 22 23 23 23

_61	CO ₃	000000000000	0,94 2,05 2,95 2,94	1,09	0,36 0,36 1,51
% NCO3	"EOO3"	8,6,6,6,6,5,7,7,7,8,8,6,6,9,6,6,9,6,6,9,6,6,9,6,9,6,9,9,9,9	1,11 0,55 1,11 0,57	0,85	10,06 10,19 3,00
	нсо,	93,05 93,05 93,05 93,05 93,05 93,05 93,05	97,95 97,40 97,94 96,50	98,07	89,58 89,45 95,49
- "8(1C3" · 1C0	2.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	3,05 1,42 3,02 0,96	5,99	3,35 3,53 0,91
6-01 · n/	ECO ₂ f-moni	3,232 3,273 3,273 3,273 3,322 3,332 3,333 3,333 3,120	1,808 1,806 1,794 1,769	2,327	2,783 2,749 3,324
9-01 • 1	CO ⁵ L-WOUP	17, 18 24, 26 24, 26 23, 24, 33 14, 10 16, 82 16, 68	17,22 37,42 17,08 52,47	25,37	10,20 9,95 50,16
.MTB	pCO2 · 10-4	6,58 6,69 6,47 77 77 77 77 77 77 77 77 77 77 77 77 7	Trit	й маяк 6,84 маяк	2,85 2,81 13,00
8-01 · n/	СО ³ , с-мочр	222222222222222222222222222222222222222	0,02 0,01 0,01 0,02 0,01	лавучий 0,02 0,07 Вучий м	0,28 0,28 0,10
6-	г-мочь/ч · 10 НСО ³ ,	2, 945 2, 945 3, 039 3, 039 3, 088 2, 379 2, 379 2, 911 2, 933	Искусственный 1,07 1,771 1,12 1,759 1,10 1,757 1,05 1,707	Волго-Каспийский плавучий 322 1,45 2,282 0,02 2,143 1,40 2,143 0,07 Астраханский плавучий мя	2,493 2,459 3,174
8-01.	Cs. L-Mouply	8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	Искусс 1,07 1,12 1,10 1,05	1,45 1,45 1,40 1,40	6,54 6,99 8,41
	г/аяє-лк <i>41V</i>	3,494 3,490 3,585 3,490 3,585 3,490 3,444	1,811 1,779 1,797 1,797	Boarc 2,322 2,273 Acr	3,055 3,013 3,384
	рН	*28222488	8,8,38 7,88,38	8,28 8,14	8,53 8,53 7,92
	C10/00	22223245 22223225 2222325 2222325 2222325 2222325 2222325 2222325 22223 2223 22223 2223 22223 22223 222	0,00	0,47	3,54 3,52 4,91
	Ç.	0.000 0.000	The property of the contract o	22,2	22,5 22,4 18,8
	Горизонт, м	0.00111100.001000000000000000000000000	Поверхность Дно Поверхность Дно	3,6	0,5 0,0 10,0
	Станция	25 25			

		0,000												0,00		
		9,63												16,98		
		89,08 89,33 89,59												82,73 82,73		
		4,6,6,6	2			bern Localia								26,63		
		2,699 2,481 2,699	1000		Charles Co. Co.	700000		BANKS LINE	TENTRO BUSINESS					1,876		
		10,63												2,63,63		
		8,8,8,8 2,33				77.55	200000000000000000000000000000000000000		2000			1	2,43	1,46	2,38	3,37
1963 r.	paspes I	0,00									pea II			3888		
юль 19	Вековой раз	2,429 2,241 2,418 5,418									Вековой разрез	1,863		1,553		
Z	Векс	7,46									Веко			24,4,4		
		2,951										1,963	-	2,175	100	
		8,48										0.00		. & & . . & & . . & & .		
		200 % 2		50000E0860				PE-90072000	1000					4,48		
		28,88										25,7	3,55,5	3888 o o o o	2,6,6	888 v.v.«,
		0000											700 000	000 000		
		- 2	က	4	ro.	9	7	oo	6	10		12	13	114	16	17

	COo	07.0	0,00	0,0	0,0	0.0.0	5,00	424	0,72 0,45 0,643 0,643		0,18
% \(\(\Sigma \) \(\Sigma \)	,°00	1 30 1	1,1,5	5,04	8,80	×, ∞, ∝ 2, ∞, ∞	10,47	10,21	6,63 10,63 7,28		5,12 5,56
	HCO3,								92,65 88,31 88,96 92,08		94,68
	\$C3"·•∮C								1,53 4,53 40 40		15,39
6-01 • I.\d	ДСО ^в L-мом	1 430	1,332	2,033	2,419	2,568 2,500 953	2,461	2,836 2,645 2,693	3,528 3,538 3,538 3,020		1,561
9-01 · 11	CO ² L-WO'LP	10	9,30	10,46	12,48	8,2,8 8,2,8	11,20	11,29	20,60 10,70 11,47 10,76		2,77
.MTB	PCO2 • 10-4		11	3,16	3,25	7,50	5,55	3,55	6,83,33 4,63,33 4,63,33	зтров	11
8-01 · r/a	СО ₃ " г-молн	paspes	2000	3,13	0,18	0.00 8.8%	000	0,27	0,000,0	энный ос	0,08
8-0	L-woup\u • 10	Вековой	1,791	1,903	Company of the Compan				2,349 2,427 2,265 2,781	Искусственный остров	1,478
6-01 · n	Ca" r-MoJb/	<u>.</u>							87,778	2	0,85
tr,	\аяе-ти <i>\$11</i> А	1 440	1,343						3,044 2,944 3,000 3,211		1,638
	hф								8,19 8,41 8,41 8,29		60,6
	CI ⁰ /100								5,24 4,73 5,41 5,41		0,04
	٤.	, i	32,23,5 4,46,7	6,52,5	25,5	23.23.52 80.80.62	26,8	3,53,53 4,7,4	24,4 26,6 15,1 15,6		28,6
	Горизонт, м		, w. Q.						00.000 00.000 00.000		2,6
	виднетЭ	0	19	20	21	55	23	24	22		

	CO		0,70	0,78	0,5	0,0	0,48	0,0	9,6	0,0	0,72	0,43		0,18
% 2CO2	"co3"											7,35		5,12
α.	HCO ₃ ′											88,96 89,32 92,08		94,68
" ⁸ O ³ "	ot.".sot		4,38	9,93	2,2,2	382	2,48	4.5	986	2,60	2,,63	2,84 2,53 1,40		15,39
8-01 • 10-3	ZCO ³ L-Mo-											2,728 2,536 3,020		1,561
9-01 · 1r/	СО2 г-моль		9,05	14,26	10,46	12,48	12,40	28,83	21,18	11,29	20,60	11,47 10,76 19,37		2,77
.MTS P	_01 • gOOq	Ш	11	1	3,16	4,02	36.6	2,1,0	2,50,0 1,00,0	0,0,0 0,00,0 0,00,0	288	4,833	тров	11
6-01 · r.\di	CO3" r-Mo1	разрез	0,02	188	0,00	0,18	188	0,26	285	0,13	0,19	0,	нный ос	0,08
8-01	L-жоль/л •] НСО ³ ,	Вековой	1,409	1,791	1,903							2,427 2,265 2,781	Искусственный остров	1,478
6-01 · n/	Ca" r-wonb		1,15	2,05	3,32	5,67	7,14	6,79	× × ×	7,28	2,28	7,78	и	0,85
r/i	аяе-ли <i>¥1</i> ∤г		1,449	1,851								2,34 2,789 3,211		1,638
	нd											8,8,8,4		60,6
	CF / 08											5,44,42		0,04
	4		25,4	18,8	3,23,5	25,5	25,5	25,6	26,1	4,52,4	24,4	25,0 15,0 15,6		28,6
W	Горизонт,		100 CE 100 CE	0,0								20,000		0,5
	Станция		18	19	20	21	22		23	24	S. A.	3		

		600			0,46 0,46 0,46	0,36	0,65	0,33	0,36	0,40	0,36	0,36 1,29
	% B CO ₃	".00			10,32 10,50 9,71	12,00	7,12	3,94 12,12	12,21	10,77 11,03 12,45	12,20	3,54
кальшия	m	нсо³,			89,22 89,04 89,83	84,8	95,03 92,23	8,7,94 8,57,94 8,57,94	95,79 87,24 88,44	88,88 87,59	95,86 87,31	95,62 87,10 95,15
	" ^E O	Z Z Z			5,8,8,8	2,79	2,02	9,00	3,59	3,2,2,2,8,6,8	3,07	0,64
кароонатом	6-01 · 1.\di	LOM-1 gOO Z			3,004 2,954 2,883	2,254	3,231	3,297 3,970 3,381	3,184 2,499 2,499	2,972 2,901 2,81	3,182	2,200 2,951 3,090
кдом	9-01.1/	СО2 г-моль			13,64 13,50 13,46	34,39	21,15	36,84 9,67 41,14	54,46 8,90 9,04	9,32	61,77	39,58 39,58
	,MT6	PCO2-10-4			4,43 0,130 1,13	3,17	5,50	3,06 6,95	2,280	3,43	10,33	3,28
Macinner	6-01·1\d	СО3" Г-мол	аспий	1963 г.	0,31	0,0	2,0	0,0,0	86,000	0,00	0,00	0,37
Tog	6-01. R. dr.	НСО ³ , L-мо	Средний Каспий	ABrycr,	2,63	2,64	2,38	2,0,0 2,0,0	2,18	2,57	6.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	2,57
HOCIB	8-01·r/	Са" г-моль	Cpe	AB	8888	87,7	8,50	× × × 5 × ×	8.8.2.1 8.4.2.1	8,20	8,83,9	8,23
nace of the nace and connects	r/	аяе-ти яль								3,209 2,799 177,2		
H 1010		н							7,97 8,46 8,49			
		رد/ ₀			5,37	5,26	, 25, 2 35, 25	5,32	5,37 4,26	5,17	5,42	5,27
and desired	Q	-			26,67 26,01 24,74	24,98	20,02	25,50	25,52	24.5	25,1 25,1	25,3
	W	тноендо Т			000	104	₀	200 of	740	000	623	000
		Нисло			2222	13	16	17	128	188	27	27
		№ станции			46/64 45/63 42/60	40/58	36/45	32/41	30/39	32 23 23	42	52

		50	818	67	09	146	91	42	62	45	822	38	99	375	0,81 95,	52	88	3.5	51	8		2,99 90, 2,76 90, 2,76 90,	
															3,780							3,254 3,131 3,081	
					0.2000	6175334		CONT. COMP.		50X57 200			200712000	27,622	53,00	1997/255	-					17,25 16,48 16,13	
		3,85	3,6	10,35	9,00	7,07	6,29	6,47	8,76	4,14	11,79	4,37	7,12	4,29	10,00	4,96	3,41	5,3	4,49	5,46		5,75	
Каспий	963 r.	0,29	0,33	0,11	0,10	0,15	0,15	0,31	0,10	0,29	0,0	0,36	0,0	0,29	0,13	0,32	0,10	0,52	0,29	0,27	961 r.	0,30	
Южный Ка	уст, 1														3,597						ycr, 1	2,937 2,825 2,775	
Юж	ABF	8,50	8,40	8,45	ο, α 0, α	8,50	8,50	α, α 50,50	8,69	8,50	, x	8,50	8,8 9,8	8,59	8,83	8,05	8,40 45	8,50	8,12	8,02	ABr	9,30 8,83 8,83	
		3,078	3,052	3,680	3,025	3,472	3,610	3,472	3,4863	3,250	3,557	3,636	3,123	3,176	3,847	3,527	9,551	3,464	3,179	4,354		3,538 3,416 3,355	
															2,05							888	1
															5,36							5,46 5,62 5,63	
		25,2	25,3	8,47	95,95	10,64	6,42	24,68	5,91	24,4	84	25,0	7,61	25,47	8,40	26,72	27,08	23,48	27,4	21,13		27,67 28,08 28,12	
		0 0	20	100	7200	100	280	400	750	0	909	0	200	0	385	0	200	30	0 9	2		000	
		00	8		ox)		6		6		6		6		9-10	10	2				222	
		8/75	9//6		7710			21/78		52/79		53/80		4/81		28/82	68/83	00/00	7/84			93	

северо-каспийских распресненных вод с морскими, насыщенность воды карбонатом кальция возрастает. Причиной, вызвавшей это повышение, является подток морских вод в поверхностный слой.

Здесь наблюдается увеличение хлора, а также ионов Са" и CO_3 ". Степень насыщенности вод $CaCO_3$ находится под влиянием ряда факторов. С увеличением солености увеличивается ионная сила раствора и уменьшаются коэффициенты активности

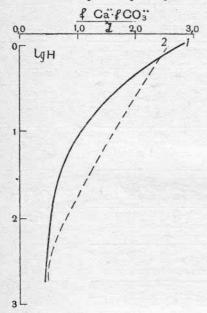


Рис. 63. Распределение по вертикали средних величин насыщенности воды карбонатом кальция. I- Средний Каспий, 2- Южный Каспий.

Са" и СО3" и, следовательно, увеличивается растворимость и уменьшается насыщенность СаСО3. Но в то же время увеличение содержания ионов Са" и СО3" уменьшает растворимость СаСО3 и степень насыщенности вод СаСО3 возрастает. Следовательно, в районе свала глубин увеличение ионов Са" и СО3" на степень насыщенности воды СаСО3 оказывает большее влияние, чем увеличение солености.

Как показывает анализ полученного материала, максимальное пересыщение вод СаСО₃ наблюдается в северном мелководном районе, районе непосредственного влияния Волги. Здесь наряду с пересыщением вод СаСО₃, отмечались низкая хлорность и высокие значения рН. Предположение о том, что пересыщение воды СаСО₃ в этом районе и повышенное значение рН вызвано

интенсивными процессами фотосинтеза, отпадает, так как процент насыщения вод кислородом был невелик, 90—97%. Высокие величины рН наблюдала Цурикова при смешении речной воды с морской в Таганрогском заливе в июле 1958 г. Возможно, в придельтовом районе северной части Каспийского моря происходит выпадение карбоната кальция.

В средней части насыщенность воды CaCO₃ в 2—3 раза превышает равновесное насыщение (табл. 120). У восточного побережья средней части моря степень насыщения CaCO₃ снижается до 2,0. Уменьшение содержания карбонатов на мелководных станциях восточного побережья, связанное с выпадением карбонатов из пересыщенных растворов, отмечал Бруевич в 1933 г.