Глава VIII

ГИДРОХИМИЧЕСКИЕ УСЛОВИЯ ОТНОСИТЕЛЬНО ХОЛОДНЫХ ВОД ВОСТОЧНОЙ МЕЛКОВОДНОЙ ЧАСТИ СРЕДНЕГО КАСПИЯ

Изучение температурного режима Каспийского моря многими исследователями показало, что в отдельных районах моря наблюдаются значительные отклонения от закономерного возрастания температур в направлении с севера на юг. Подобная аномалия отмечена на восточном побережье Среднего Каспия, где в наиболее теплый период (июль—август) систематически наблюдаются низкие температуры воды по сравнению с температурами прилегающей открытой части моря и западного побережья. В большинстве работ (Щербак, 1940, Штокман, 1937, Архипов и др. 1958) это явление объясняется выходом на поверхность глубинных холодных вод вследствие сгонного эффекта.

Гидрометеорологические исследования Института географии АН АзССР в последние годы подтверждают аномальное распределение температуры. Однако указанное выше объяснение отклонений температуры ученые этого института считают необос-

нованным (Х. К. Уланов, 1960).

Уланов (1960) указывает, что «основным показателем сгона, вызывающим подъем глубинных вод, является понижение уровня моря в прибрежной полосе». И далее он отмечает, что анализ хода уровня моря в периоды предшествующий и сопутствующий экспедиционным работам не установил заметных понижений уровня, являющихся результатом сгона, в то время как анома-

лия температуры была значительной.

Такая точка зрения Уланова на явление сгона представляется не совсем правильной. А. И. Симонов (1960), как и другие исследователи, считает, что заметные понижения уровня при сгонных ветрах возможны только в том случае, когда убыль отгоняемой от берега воды не компенсируется подтоком глубинных вод, т. е. тогда, когда по ряду причин затруднены условия развития вертикальной циркуляции. К числу таких причин относится наличие мелководья, сужение берегов и др. Наоборот, у приглубых открытых берегов (например, у восточных берегов Каспия) сгонный ветер мало влияет на положение уровня, так как количество отгоняемой с поверхности воды будет почти или полностью возмещаться притоком глубинных вод. В этом случае сгонный ветер, вызывая развитие вертикальной циркуляции, приводит к значительному перераспределению таких характеристик, как температура, соленость, цвет воды и др.

В августе 1960 г. в съемках восточной мелководной части Среднего Каспия Института географии АН АзССР принимала участие и гидрохимическая группа Государственного океаногра-

фического института (Г. В. Лебедева и др.) под руководством Уланова. Сбор материала производился по коротким широтным разрезам от берега в море, расположенным с севера от Форта-Шевченко на юг до залива Кара-Богаз-Гол. На каждом разрезе сделано по три станции на расстоянии 10 миль друг от друга.

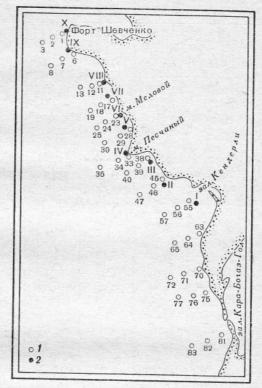


Рис. 79. Схема расположения станций, на которых взяты пробы воды на химический анализ и определялся солевой состав (1) или не определялся (2).

Всего сделано 14 разрезов и 48 станций (рис. 79). В пробах воды, взятых на стандартных горизонтах от поверхности до 30 м, определялись температура воды и комплекс гидрохимических

показателей из четырех элементов (табл. 139).

Температура. Во всех пробах восточной части Среднего Каспия за исключением нескольких проб в районе Казахского залива (разрезы X и XI) температура воды на ближних к берегу станциях оказалась ниже, чем на более удаленных. Это наблюдалось на всех горизонтах. Наибольшая разница колебаний температуры отмечается на горизонте 10 м, где она достигает 11°, составляя в среднем около 4,4°, в то время как на поверхности

 Таблица 139

 Распределение гидрохимических показателей в августе 1960 г.

Разрез	Стан- ция	Глуби- на, м	Гори- зонт, м	t°	C1 º/00	S º/00	Alk мг-экв/л	$\frac{Alk}{Ci} \cdot 10^{6}$
I	1	14	0 5 12	21,60 21,80 19,99	4,67 4,98 5,18	11,16 11,89 12,36	3,565 - 3,565	7634 7222
	2	20	0 10 15	22,20 23,30 13,05	5,08 5,18 5,23	12,13 12,36 12,48	3,565 3,700	7018 7143 —
	3		0 10 15 20 25	22,80 22,71 21,71 10,01 12,78	5,13 5,13 5,19 5,17 5,38	12,25 12,25 12,39 12,34 12,84	3,727 3,646 3,836 3,863	7265 7107 7420 7180
11	6	17	0 5 10 15	22,60 20,70 10,70	4,96 5,01 5,24 5,37	11,85 11,96 12,51 12,81	3,646 - 3,714 3,822	7351 7088 7117
	7	40	0 10 20 30	23,00 23,37 14,53 6,79	5,01 5,04 5,32 5,38	11,96 12,03 12,69 12,84	3,714 3,673 3,646	7413 7288 6853
	8	46	0 10 20 30	22,10 21,68 7,24 6,88	5,22 5,23 5,35 5,37	12,46 12,48 12,77 12,81	3,752 3,673 3,768	7188 7023 7043
Ш	. 11	19	0 5 10 17	20,50 20,65 19,19 12,78	5,32 5,33 5,27 5,37	12,69 12,72 12,57 12,81	3,752 - 3,781 3,700	7053 7175 6890
	12	40	0 10 20 30	21,10 21,07 11,07 7,72	5,32 5,31 5,37 5,37	12,69 12,67 12,81 12,81	3,752 3,727 3,727	7053 7019 6940
	13	76	0 10 20 30	21,70 22,80 16,22 9,08	5,37 5,33 5,37 5,27	12,81 12,72 12,81 12,57	3,822 3,795 3,795 —	7117 7120 7067
IV	17	18,5	0 5 10 16,5	18,30 14,93 9,90 9,70	5,32 5,32 5,34 5,35	12,69 12,69 12,74 12,77	3,781 - 3,795 3,727	7107 7107 6966
	1		the state of the s	Annual Control of the Control	Marie Control of the	And the second second	Anna Landa Barrier	

Разрез	Стан-	Глуби- на, м	Гори- зонт, м	t°	C1 º/00	S %/00	Alk мг-экв/л	Alk Cl
	18	39	0 5 10 20 37	19,00 17,96 12,22 10,67 8,40	5,33 5,36 5,34 5,36 5,37	12,72 12,79 12,74 12,79 12,81	3,808 3,808 3,752 3,808	7144 7131 7000 7091
	19	149	0 20 30 50	18,30 18,52 18,49 7,10	5,27 5,30 5,31 5,31	12,57 12,65 12,67 12,67	3,836 3,752 — 3,727	7279 7079 7019
V	23	18,5	0 5 10 16,5	20,80 16,23 12,66 10,71	5,38 5,36 5,32 5,32	12,84 12,79 12,69 12,69	3,781 3,781 3,808	7028 7107 7158
	24	63	0 10 20 30	21,10 14,78 7,61	5,37 5,22 5,24 5,32	12,81 12,46 12,51 12,69	3,849 3,752 3,741	7168 7188 7139
	25	127	0 10 20 30 50	23,90 20,24 8,06 7,29 7,00	5,32 5,32 5,27 5,31 5,32	12,69 12,69 12,57 12,67 12,69	3,849 3,822 3,781 — 3,752	7235 7184 7175 — 7053
VI	28	16	0 5 10 14	21,00 16,56 12,50 11,70	5,37 5,36 5,37 5,34	12,81 12,79 12,81 12,74	3,836 3,836 3,795	7143 7143 7107
	29	36	0 5 10 20 34	20,50 15,58 8,76 	5,39 5,36 5,22 5,34 5,37	12,86 12,79 12,46 12,74 12,81	3,836 3,836 3,836 3,836	7117 7349 7184 7143
	30	74	0 10 20 30 50	22,90 21,63 8,75 7,52 7,27	5,37 5,27 5,33 5,37 5,35	12,81 12,57 12,72 12,81 12,77	3,822 3,808 3,822 — 3,849	7117 7226 7171 — 7194
VII	33	11	0 5 9	19,24 17,42	5,42 5,38 5,40	12,93 12,84 12,88	3,808 3,808	7026 7052

Разрез	Стан-	Глуби- на, м	Гори- зонт, м	t°	Cl º/00	S º/00	Alk мг-экв/л	$\frac{A^{\dagger}k}{Ct} \cdot 10^4$
	34	56	0 5 10 20 30	22,10 21,58 18,14 9,34 7,79	5,41 5,37 5,37 5,38 5,35	12,91 12,81 12,81 12,84 12,77	3,836 - 3,752 3,836 -	7091
	35	110	0 5 10 20 30	22,10 23,40 22,83 11,60 8,10	5,44 5,39 5,34 5,32 5,31	12,98 12,86 12,74 12,69 12,67	3,808 3,752	7131 7053
VIII	38	17	0 5 10 15	18,50 13,58 12,53 10,97	5,44 5,42 5,38 5,38	12,98 12,93 12,84 12,84	3,863 3,863 3,863	6615 7180 7180
	39	37	0 5 10 20 35	16,60 15,75 15,10 8,09 7,93	5,38 5,34 5,42 5,33 5,32	12,84 12,74 12,93 12,72 12,69	4,025 3,863 3,917 3,903	7481 7127 7349 7336
	40	47	0 5 10 20 30	18,30 15,95 15,79 8,80 8,13	5,44 5,44 5,33 5,33 5,44	12,98 12,98 12,72 12,72 12,72 12,98	3,836 3,808 3,863	7051 7144 7248
IX	45	14	0 5 12	19,59 18,55 13,00	5,44 5,28 5,23	12,98 12,60 12,48	3,768 3,863	6926 7386
	46	37	0 5 10 20 35	19,10 18,89 18,02 8,09 8,41	5,41 5,38 5,39 5,33 5,35	12,91 12,84 12,86 12,72 12,77	3,808 3,741 3,836 3,781	7039 6941 7197 7067
х	55	18	0 5 10 16	21,10 20,76 20,52 13,44	5,49 5,44 5,38 5,33	13,10 12,98 12,84 12,72	3,822 3,808 3,781	6962 - 7078 7094
	56	37	0 10 35	20,60 20,31 9,41	5,38 5,38 5,23	12,84 12,84 12,48	=	=

Разрез	Стан- ция	Глуби- ня, м	Гори- зонт, м	t°,	Cl º/00	S º/100	Alk мг-экв/л	Alk ·10
XI	63	20	0 10 18	21,10 18,10 14,60	5,33 5,33 5,33	12,72 12,72 12,72	3,822 3,686 3,752	7171 6916 7039
	64	40	0 10 38	19,60 19,76 8,90	5,33 5,33	12,72 - 12,72	3,863 3,822 3,822	7248
	65	70	0 10 68	21,00 21,15 8,18	5,18 5,23 5,38	12,36 12,48 12,84	3,795 3,808 3,808	7326 7281 7078
XII	70	20	0 5 18	21,20 21,89 11,97	5,28 - 5,23	12,60 — 12,48	3,836	7335
	71	60	0 10 58	21,00 22,97 8,78	5,28 5,33 5,38	12,60 12,72 12,84	3,836 3,741 3,917	7265 7019 7281
	72	71	0 10 69	23,00 23,47 7,89	5,23 5,38 5,38	12,48 12,84 12,84	3,795 3,808 3,836	7256 7078 7130
XIII	75	19	0 10 17	21,60 18,92 13,21	5,28 5,33 5,33	12,60 12,72 12,72	3,727 3,752	7059 7039
	76	47	0 10 45	22,60 22,77 9,16	5,39 - 5,33	12,86	3,795 3,795 3,795	7041 7120
	77	92	0 10 90	23,20 23,58 8,46	5,38 5,33 5,41	12,84 12,72 12,91	3,646 3,836 3,822	6777 7197 7065
XIV	81	13	0 11	20,40 15,85	5,49 5,29	13,10 12,62	3,836 3,808	6987 7198
	82	32	0 10 30	22,50 22,84 11,29	5,49 5,44 5,38	13,10 12,98 12,84	3,752 3,741 3,686	6834 6877 6851
	83	60	0 10 58	23,00 23,40 9,22	5,39 5,38 5,44	12,86 12,84 12,98	3,727 3,727 3,781	6915 6928 6950
							100	

разница температур в среднем равна 1,6°. Очевидно, на мелководье сильнее сказывался прогрев поверхностного слоя воды за счет солнечной радиации. Таким образом, по данным наших ра-

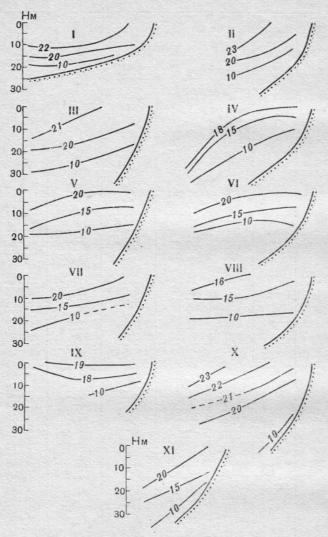


Рис. 80. Распределение температуры (в градусах) на разрезах по данным 1960 г. (Пахомова).

бот в августе 1960 г. (рис. 80), так же, как и по данным Уланова в августе 1959 г. (рис. 81), установлено наличие полосы холодных вод вдоль всего восточного побережья Среднего Каспия. Хлорность. Распределение хлорности (солености) в исследованном районе дается по размерам с севера на юг. На разрезах I и II (станция 1—3 и 6—8), характеризующих прибрежные участки Мангышлакского полуострова, хлорность увеличивается от берега в море, причем сильнее на поверхности от 4,67 до 5,13% (разница 0,46%) на разрезе I и с 4,96 до 5,22% (разница

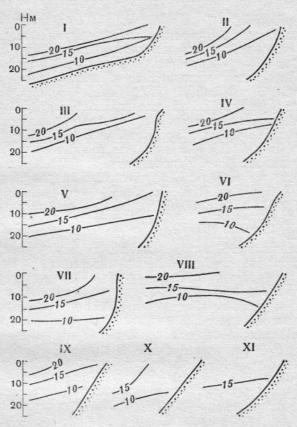


Рис. 81. Распределение температуры (в градусах) на разрезах по данным 1959 г. (Уланов).

0,26‰) на разрезе II. В августе 1960 г. в этом районе была обнаружена также пониженная хлорность поверхностных вод. Так, на станциях 18 и 17 разреза п-ов Мангышлак — о. Чечень, расположенных немного севернее разреза I, пробы воды имели хлорность 4,08, 4,72 и 5,00‰.

Опреснение прибрежных морских вод может быть вызвано материковыми водами. В апреле 1961 г. во время экспедиционных работ были взяты две пробы воды в вырытой вручную ямке в песке приблизительно в 100 м от уреза воды. Анализ их

показал, что вода слабо осолонена, хлорность ее составляет 2,44 и 2,48% или соответственно 5,90 и 5,99% солености. Поступление такой воды в море может понизить соленость только поверхностных вод, в слое 0-5 м. В нижних горизонтах это опреснение не сказывается, там хлорность уже равна хлорности морской воды, 5,32-5,37%.

На разрезах III и IV не обнаруживается четкого распределения хлорности ни по горизонтали, ни по вертикали. Возможно, погодные условия нарушают стратификацию вод, так как во время работ на этих разрезах были сильные ветры. Возможно также, что на состав водных масс, в частности на хлорность, влияют два противоположно действующих фактора: с одной стороны, выход распресненных материковых вод (подобно тому, как это имеет место на севере) и, с другой, — подъем глубинных, более соленых вод за счет сгонного эффекта.

На разрезах V и VI содержание хлора меняется мало. По вертикали оно несколько уменьшается с глубиной, но градиенты колебаний незначительны. По горизонтали хлорность воды почти

одинакова.

От мыса Песчаного до бухты Кендырли (разрезы VII—X) поверхностные воды имеют наибольшую хлорность от 5,41 до 5,49‰, или соленость от 12,91 до 13,10‰. По вертикали хлорность уменьшается. Разница в хлорности между поверхностным и нижним горизонтами на большинстве станций незначительна и выражается сотыми долями промилле. В редких случаях разница составляет 0,15—0,16‰. Метеорологические условия во время съемок в этом районе были благоприятны — спокойная и даже штилевая погода, поэтому стратификацию хлорности воды в это время можно считать нормальной для данного времени года.

На разрезах XI и XII хлорность воды колеблется мало: на станциях 63 и 64 она почти одинакова и составляет 5,33‰ во всей толще, на других станциях она увеличивается в глубину до 5,38‰. На последнем разрезе хлорность на поверхности на ближайших к берегу станциях 81 и 82 достигает 5,49‰, с глубиной и далее в море она понижается. На этих станциях ясно сказывается воздействие высокосоленых вод Кара-Богаз-Гола.

Анализ горизонтального и вертикального распределения хлорности в воде восточной мелководной части Среднего Каспия показывает, что в северной части хлорность возрастает от берега к открытой части моря и от поверхности ко дну. Это может обусловливаться опресняющим действием материковых вод с берега (разрезы I и II). С разреза V, т. е. от мыса Мелового на юг, хлорность на поверхности постепенно увеличивается. Наибольшая хлорность отмечена на участке от мыса Песчаного до Кендырли. Больших колебаний в величинах хлорности во всей исследуемой части моря не обнаружено. Колебания сотых долей

промилле не позволяют сделать какие-либо выводы о наличии здесь вод иного химического состава, кроме свойственного каспийским водам.

Щелочность. Характерным показателем смешения вод разного солевого состава является щелочно-хлорный коэффициент, т. е. отношение абсолютной щелочности воды, выраженной в мг-экв., к хлорности $\left(\frac{Al\,k}{Cl}\right)$. Для каждого водоема эта величина довольно постоянна, если нет приноса вод иного солевого состава. На взморьях, куда поступает речной сток, щелочно-

хлорный коэффициент выше, чем в открытой части моря. Так, в предустьевом пространстве Куры, по данным за июнь 1960 г., щелочно-хлорный коэффициент с удалением от берега в море убывает на станциях 19, 20, 27 от 29324, 17446, 10738 до 8115 и в открытой части моря составляет в среднем 6750. Поступление вод с большей соленостью, чем в самом море, ведет к пониже-

нию щелочно-хлорного коэффициента.

Абсолютная щелочность (Alk) в исследуемом районе колеблется мало. Меньшая щелочность, 3,565—3,673 мг-экв/л, в северной его части (разрезы I и II) объяняется наличием здесь менее минерализованных вод. Большая щелочность, 3,903-4,025 мгэкв/л встречается только на одной станции 39. Подавляющее число проб имеет щелочность в пределах от 3,700 до 3,860 мг-экв/л. Щелочно-хлорный коэффициент изменяется в основном в зависимости от хлорности. На севере, где хлорность меньше, он выше, чем на южных участках с наибольшей хлорностью воды. По вертикали щелочно-хлорный коэффициент колеблется на разрезах по-разному (табл. 140). Как видно из табл. 140 щелочно-хлорный коэффициент в се-

верной части (разрезы I—IV) уменьшается по вертикали сверху вниз. Это объясняется наличием на поверхности опресненных вод и увеличением хлорности с глубиной. Южнее наблюдается обратное — щелочно-хлорный коэффициент увеличивается сверху вниз, сначала от мыса Мелового (разрез V) до мыса Песчаного (разрез VI) слабо, а затем до Кендырли (разрезы VII—X) значительно. Такой ход изменения $\frac{Alk}{Cl}$ связан с указанным ранее

повышением на этом участке хлорности, особенно на поверхности. То же самое отмечено и на южных разрезах (XII—XIV). Отношение величины щелочно-хлорного коэффициента на поверхности к аналогичной величине у дна на всех разрезах близко к единице, колебания его незначительны. Отсюда ясно, что величина щелочно-хлорного коэффициента в восточной части Среднего Каспия в основном зависит от хлорности воды и ни о каком притоке вод нового солевого состава не свидетельствует.

Солевой состав вод. В 1961 г. во время совместной апрельской съемки института географии АН АзССР и Государственного океанографического института гидрохимической группой ГОИНа (С. К. Смольянинова и др.) были собраны пробы воды на 10 станциях, расположенных вдоль восточного побережья Среднего Каспия от Кара-Богаз-Гола до Форта-Шевченко (рис. 79). Всего собрано 34 пробы. Для решения вопроса о солевом составе вод в лаборатории химии моря ГОИНа под руководством автора проведен химический анализ (Лебедевой) по определению катионной и анионной составных частей воды.

Таблица 140
Изменение щелочно-хлорного коэффициента на разрезах по вертикали
лля слоев 0—5 м (а) и 20—30 м (б)

	Разрезы									
Слой	I	II	Ш	IV	v	IV	VII			
a	7306	7314	7074	7177	7144	7126	6915			
б	7182	7004	6966	7025	7157	7148	7078			
$\frac{a}{\delta}$	1,017	1,044	1,015	1,022	0,998	0,995	0,977			
Слой	Разрезы									
	VIII	IX	х	XI	XII	XIII	XIV			
a	7049	6982	6962	7248	7260	6959	6912			
б	7259	7291	7094	7096	7205	7075	7000			
<u>a</u> <u>6</u>	0,971	0,958	0,981	1,021	1,008	0,983	0,987			

Методика определения компонентов солевого состава (кроме сульфатов) описана в главе II. Сульфаты определялись методом прямого титрования проб воды азотнокислым свинцом $Pb(NO_3)_2$ с индикатором дифенилкарбазоном 1 (Γ . Н. Нечипоренко, 1957). Полученные результаты выражались в весовых единицах (Γ /к Γ) и в объемных (Γ -экв/л) и приведены в табл. 141 и 142. Как видно из этих таблиц 2 , солевой состав на станциях

² Для сравнения в табл. 141, 142 и 143 приведены средние данные для открытой части Среднего Каспия

¹ Объемный метод определения сульфатов дал несколько завышенные результаты по сравнению с весовым. В данной работе для суждения об однородности вод исследуемого района мы предпочли первый, как менее трудо-

Tabauya 141

Станция	Горизонт, м	כדי	SO ₄ "	HCO ₃ ′	Ca	Mg"	Na' + K'	Сумма вонов
П	000		3,071		0,349	0,728	3,046	12,793
Ξ	20		3,087		0,352	0,746	3,274	13,058
	0.5		3,089		0,358	0,739	3,265	13,061
IV	0		3,181		0,371	0,730	3,330	13,213
	· 62		3,082		0,362	0,740	3,284	13,085
^	14 0		3,119		0,353	0,736	3,290	13,078
	10		3,214		0,362	0,738	3,355	13,289
IA	<u> </u>		3,182		0,352	0,733	3,371	13,221
	0!		3,234		0,354	0,748	3,344	13,226
VIII	<u></u> 0		3,242		0,352	0,740	3,322	13,785
	15		3,215		0,354	0,721	3,382	13,289
VIII	24		3,192		0,364	0,741	8,8334 299,8	13,232
	01		3,198		0,349	0,767	3,291	13,207
XI	∞ ⊂		3,176		0,353	0,725	38.50	13,208
	10	5,38	3,223	0,218 0,221	0,355	0,721	3,386	13,283
Среднее		5,3880	3,1670	0,2190	0,3568	0,7391	3,313	13,183
оеднее для откры	Среднее для открытой части	5 44	3 0112	0 2168	0.3598	0 7447	3 938	13 004

Сумма анионов и катионов	429, 612 428, 100 430, 294 430, 294 431, 110 431, 110 431, 200 431, 2
Na° + K° в пересчете на Na°	137, 692 131, 215 136, 411 136, 242 136, 824 136, 824 139, 773 140, 603 140, 603 141, 337 141, 337 141, 337 141, 337 141, 337 141, 337 141, 337 141, 337
Mg"	59,490 65,123 60,123 60,570 60,633 60,540 60,639 60,639 60,639 60,639 60,639 60,637 60,639 60,637 60,639 60,637 60,639 60,639 60,639 60,637 60,639 60,637 60,639 60,637 60,639 60,637 60,639 60,639 60,639 60,637 60,639 60,637 60,639 60
.ca.	17,711 17,712 17,712 17,575 17,575 17,673 17,673 17,625 17,673 17,673 17,673 17,673 17,673 17,673 17,673 17,773 17,773 17,773
Сумма анионов	214,806 215,147 215,147 215,147 215,147 217,100 215,556 216,610 218,331 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735 217,735
HCO ₃ ′	
SO ₄ "	62, 232 66, 243 66, 244 66, 24
Cl' + Br'	150,697 148,493 149,320 148,769 149,320 149,044 147,941 147,941 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493 148,493
Горизонт, м	71 00 01 01 01 01 01 01 01 01 01 01 01 01
Станция	III III III III III III III III III II

I—IX довольно однороден; имеющиеся небольшие колебания часто могут быть отнесены за счет погрешностей анализа. В конце таблиц помещены средние значения компонентов в исследованном районе. Расхождения их с данными для открытой части Среднего Каспия невелики, но большинство данных указывает на несколько повышенную концентрацию солей в прибрежной зоне. Необходимо оговориться: натрий и калий экспериментально нами не определялись. Сумма их подсчитана как разность между суммой мг-экв анионов и мг-экв кальция и магния. В таких случаях, обычно, все погрешности анализов падают на рассчитанную величину. Возможно, эта величина в действительности несколько иная, но расхождение между нею и суммой натрия и калия в каспийской воде, полученной в результате химического анализа, не столь велико, чтобы изменить соотношение между другими ионами.

Таким образом, в восточном мелководном пространстве Среднего Каспия солевой состав почти тождествен солевому составу

вод прилегающей открытой части моря.

Процесс метаморфизации вод под действием различных факторов хорошо можно проследить по отношению солеобразующего компонента к преобладающему в солевом составе иону, каким для морской воды является хлор. Нами взяты отношения

к хлору абсолютной щелочности $\frac{Alk \text{ мг-9кв/л}}{Cl^{-0}/_{00}}$, кальция $\frac{\text{Ca}^*}{\text{Cl}'}$ и магния $\frac{\text{Mg}^*}{\text{Cl}'}$ (табл. 143).

Таблица 143
Относительные величины щелочности, кальция и магния в восточной прибрежной зоне и открытой части Среднего Каспия

		приоре	akiion 50	ne n oik	рытон части среднего Каспия				
Станция	Горизонт, м	Alk Cl	Ca C1	Mg Cl	Станция	Горизонт, м	Alk	Ca Cl	Mg Cl
ı	17	_	0.0650		VII	0	0,6748	0.0672	0,1385
II	0	0,6730	0,0649	0,1353		15	0,6665	0,0656	0,1335
	20	0,6689	0,0656	0,1468		24	0,6803	0,0676	0,1377
III	0	0,6734	0,0654	0,1387	VIII	0	0,6829	0,0677	0,1340
	10	0,6751	0,0664	0,1371		10	0,6833	0,0649	0,1426
	21	0,6747	0,0654	0,1375		18	0,6727	0,0656	0,1348
IV	0	0,6803	0,0689	0,1357	IX	0	0,6764	0,0654	0,1338
	5	0,6639	0,0670	0,1370		10	0,6727	0,0660	0,1340
	14	0,6721	0,0667	0,1339		15	0,6783	0,0662	0,1451
V	0	0,6785	0,0658	0,1373	Среднее				
	10	0,6759	0,0670	0,1367			0,6752	0,0662	0,1372
VI	18	0,6785	0,0668	0,1379					
VI	0	0,6762	0,0669	0,1355	Средне		0,6588	0,0650	0,1369
	10	0,6714	0,0657	0,1388	открыто		1		
	17	0,6796	0,0654	0,1375	Среднег	о Каспия			