Глава 3

БИОГЕННЫЙ СТОК ВОЛГИ И ГИДРОХИМИЧЕСКИЙ РЕЖИМ КАСПИЙСКОГО МОРЯ

Биогенный сток Волти

Изучение минератьных п органических взвесей и хммического состава волжских вод было начато в 1936 г. С. В. Бруевичем и С. В. Аничковой (1941). С этого времени мы имеем непрерывный ряд наблюдений за взвешенным веществом, минеральным фосфором, минеральным и аммиачным азотом п минеральным растворимым кремнием С 1941 г. этн наблюдения проводились Н. И. Винецкой (1962), после 1947 г. М. В. Федосовым и Л. А. Барсуковой (1959), а затем Л. А. Барсуковой (1957, 1962, 1965, 1967, 1971).

Более полное пзучение всех форм содержания азота и фосфора в речном стоке начато с 1951-1952 тг. Результаты этих исследований представлены в работе Л. А. Барсуковой (1971). В 1961-1966 гг. наблюдения в районе с. Верхнее Лебяжье проводила Б. М. Затучная (1970). У Волгограда в 1957-1961 гт. аналогичные работы были вышолнены А. А. Зениным (1965).

Изучению бногенных алементов в водохранилищах посвящены работы Н. Н. Гусевой (1968) і В. И. Сиденко (1968, 1971). А. И. Симонов (1969) обобщил гидрохимические наблюдения по Азовскому, Аральскому, Каснийскому н Балтийскому морям, показав исключительно важное значение рек в балансе фосфора этих морей и постепенное уменьшение его концентраций в речном стоке в направлении моря.

При изучении биогенного стока прежде всего возникает вопрос, в какой мере сказалось зарегулирование на концентрации биогенных веществ в волжских водах и выносе их в море. Точки зрения различных исследователей по этому вопросу на первый взтляд кажутся диаметрально противоположными. Так, А. А. Зенин (1965), подводя итог многолетним гидрохимическим исследованиям Волги и ее водохранилищ, пришел к выводу, что сток минерального фосфора после зарегулирования существенно не изменнлся. По его наблюдениям, в 1957-1961 гг. годовой сток фосфатов в районе Волюограда составлял $5,4-7,3$, в среднем 6,0 тыс. т, т. е. находился на том же уровне, что п до зарегулирования, когда, по данным С. В. Бруевича и Н. И. Аничковой (1941), он составлял (19361940 гг.) $3,9-7,7$, в среднем 6,1 тыс. т. Наблюдения последних авторов проводились в районе Астраханн.

Сходной точки зрения придерживаются Н. Н. Гусева (1968) и В. И. Спденко (1968,1971). Так, по В. И. Сиденко, концентрация минерального фосфора в Волгоградском водохранилище в 1960-1967 т. достигала 3080 мгг/л, а в реке до зарегулирования (1944-1958 тг.) - $18-38$ мкт/л. В Куйбышевском водохранилище средняя концентрация фосфатов, по данным Н. И. Гусевой, увеличилась с 19 до 49 мкг/л.

Однако наблюдения Ј. А. Барсуковой (1971) и Н. И. Винецкой (1968) убеждают, что годовой сток минерального фосфора в створах c. Верхнее Јебяжье и Астрахани ва период с 1936-1940 до 1967-1969 тг. уменьшился с 6 до 1,8 тыс. т, т. е. более чем в три раза. При әтом следует учесть, что в море попадает не более половины этого количества.

Данные об уменьшении фосфатов в стоке Волги в направлении моря, выявленные А. И. Симоновым (1969), подтвердились в 1972 г., когда конщентрации фосфатов, по наблюдениям Волжской комплексной әкспедиции АН СССР, по всей Волне - от Чебоксар до Волгограда - в июле

держались на уровне от $20-30$ до $70-80$ мкг/л, а у с. Верхнее Јебяжье в период половодья не превышали 15 мкт/л. В Северном Каспии концентрации минерального фосфора в большинстве районов были ниже 8-10 мкг/л.

Таким образом, правы те исследователи, которые доказывают, что концентрации фосфатов в водохранилищах не только сохранились на уровне, наблюдавшемся до зарегулировання стока Волги, но и существенно возросли. Но одновременно правы и те, кто доказывает резкое уменьшение фосфатов в нижнем течении реки и в море (по наблюдениям у c. Верхнее Лебяжье и у Астрахани).

Второй вопрос сводится к установленню нернода резкого изменения содержания фосфатов в ннжнем течении Вожи.

Большинство исследователей (Винецкая, 1965, Барсукова, 1971, Москаленко, 1971, Затучная, 1970, Пахомова, Затучная, 1966, 1972) считают бесспорным, что уменьшение взвесей и минерального фосфора в стоке Водги стало проявдяться в начале пятидесятых тодов $(1949-1955)$ в связи с созданнем каскада водохранилищ.

Ј. А. Барсукова (1971) пшшет, что период 1936-1940 гг., несмотря на его маловодность ($148-205$ км 3), хараютеризовался большими величинами выноса биогенных әлементов и взвесей. Наблюдавшееся в те годы небольшое по объему (93-132 км ${ }^{3}$), но продолжительное ($61-94$ суток) весеннее ноловодье обогатило Касший значительным количеством питательных солей (фосфатов - до 3,6 тыс. т, взвесей - до 16 млн. т). В многоводный период 1941-1948 тг. наблюдался и наибольший вынос минерального растворенного фосфора (в среднем за половодье $-5,5$ тыс. т) и взвешенного вещества (до 29,0 млн. т). Tакое увеличение бногенного стока указывает на прямую связь между водностью весеннего половодья й выносом бногенов, что отмечала Н. И. Винецкая (1952). В 1949-1955 гг. әта связь была нарушена и, несмотря на увеличение водного стока в половодье (против 1936-1940 гг.), вынос фосфатов уменьшился более чем в два раза. Такое несоответствие Л. А. Барсукова объясняет созданием ряда водохранилищ, где иронсходит аккумуляция биогенов волжскьго стока.

Чтобы решить этот вопрос, мы построили, по наблюдениям Л. А. Барсуковой, граф̆пк водности Волн, содержания взвешенных веществ и фосфатов в единице объема и вынос этих әлементов в зону наблюдений (рис. 8). Из этого графика видно, что с увеличением стока в 1940 и 1941 гг. после маловодного нериода (1933 -1939) содержание и вынос взвешенных вепеств и фосфатов возрастает; с 1942 по 1945 г. соответствующих наблюдений нет. Резкое снижение обоих әлементов произошло в 1946-1948 гс. при значительном стоке до создания на Волге и Каме основных водохранилищ. В 50 -х годах количество взвешенных веществ увеличивается, фосфатов незначительно снижается. С 1955-1957 гг. существенно снижаются оба элемента, что совпадает с сооруженнем плотин у Куйбышева и Волгограда. В многоводный 1966 г. количество взвешенных веществ и фосфатов резко повышается, но затем вновь падает.

Нам представлялось вполне логичным, что количества взвесей и концентраций минерального фосфора в единице объема воды должны находиться в положительной коррелятивной связн с объемом стока в период половодья.

Однако четкой связи между сответствующими элементами обнаружить нам не удалось. Ряд лет с больпим объемом стока характеризуется низким содержаннем взвесей и фосфатов, й наоборот, в некоторые маловодные годы наблюдается повышенная концентрация обоих элементов. Так, в многоводный 1947 год (сток в половодье 160 км 3) взвешенных веществ было $60 \mathrm{r} / \mathrm{m}^{3}$. При зарегулированном стоке в 1966 г . (объем попуска - $140 \mathrm{\kappa м}^{3}$) взвешенных веществ было $70 \mathrm{r} / \mathrm{m}^{3}$. В то же время в годы относительно небольшого половодья (в 1939 г.- 112 км³ $^{3} 1940$ г.-

Рис. 8. Элементы стока и бногенного режима Волги
1 - годовой сток Волн у с. В. Лебнжье, км²; 2- сток Волти за половодье; 3 - вавешенное вещество за половодье, т/м²; 4-вввешенное вещество за половодье, мли. т; 5 - минеральный фосфор аа половодье, мвг/л; 6 - минеральный фосфор за половодье, тыс, т; вннзу объемы водохранилищ, в скобках давы годы их заполвенин: 1 - Иваньковское (1937 г.); $2-$ Угличское (1940 г.) ; 3-Рыбинское (1941-1947 тг.); 4- Горьковское (1955-1959); 5 - Камекое (19541956 гг.) ; 6 - Куйбышевское ($1955-1957$ гг.); 7 - Волгоградское (1958-1960 гг.) ; 8 - Воткилское (1961 г.); 9 - Саратовское (1967 г.)
120 км 3) кол屯чество взвешенных веществ достигало соответственно 145 и $180 \mathrm{r} / \mathrm{m}^{3}$.

Большой интерес представляют наблюдения за концентрациями и выносом взвешенных веществ и фосффатов в 1946-1950 тг.

	1946 v .	1947 r.	1948 r .	1969 x	1950 r .
Годовой сток, км ${ }^{3}$	254	299	261	217	237
Ноловодье, км ${ }^{3}$	135	180	152	128	110
Взвешенные вещества, $\boldsymbol{r} / \mathrm{m}^{3}$	195	67	$\begin{gathered} \text { Нет } \\ \text { данных } \end{gathered}$	53	90
Минеральный фосфор, мкг/л	36	17	21	17	14
Вынос взвешенных веществ, млн. т	26,4	12, 1	$\begin{gathered} \text { Нет } \\ \text { данных } \end{gathered}$	6,7	9,9
Вннос минерального фосч̣ора, тыс.т	4, 9	3,0	3,2	2,2	1,5

Объем стока и половодья 1946 г. был значительным по сравнению с предшествующими 1944 и 1945 гг. Показатели по взвешенным веществам и фосфатам были высокими. В следующий 1947 г. водность Волги резко

возрастает, а содержание взвешенных веществ и фосфатов снижается. В 1948 г., к сожалению, соответствующие наблюдения ве проводились, но и в два последующие года (1949 п 1950) содержание взвешенных веществ и фосфатов было низким.

Приведенные факты позволяют предполагать, что фонд взвешенных веществ минеральных и органическнх и фонд фосфатов относительно оградичен. Он накапливается в маловодные годы и быстро вымывается в многоводный период.

Приведенные ниже данные [по Барсуковой (1971) и Винедкой (1968)] свидетельствуют о значительном уменьшении концентраций фосфатов на участке между створом с. Верхнее Лебяжье и морем. Здесь концентрации фосфатов уменьшились в период 1954-1965 гг. в два раза. Концентрации в восточной части моря были несколько ниже, чем в зашадной. Концентрации фосфатов уменьшались в направлении моря, от мелководной. зоны к глубинной, а также во времени - с июня к августу.

C. Верхнее Лебяжье Северный Каспий

Мелководная зона
Глубоководная зона

Время взнтін шуобы и кошчество Р, мкг/л
Период половодья, 11,0

Западпый район	Восточный район		
пюнь	август	нюнь	август
6,6	5,7	3,4	5,6
5,1	5,6	4,6	4,7

Процесс сншжения концентраций фосфатов должеп характеризовать его использование при формированни первичной продукцни.

Нужно думать, что в море выпадевне минерального фосфора в осаджи минимальное. Уменьшение же количества фосфатов в дельте Волги, на пути к морю, должно быть, по всей видимости, значительным вследствие оседания со взвешенными веществами в зарослях тростника и использования их выстей водной растительности, количество которой в процессе роста дельты и образовання авандельты резко увеличилюсь.

О концентрацнях фосфатов в период 1936-1940 гг. мы нмеем возможность судить только по неполным данным. Они былы следующие: у Астрахани 33 мкг/л, море (западная глубоководная часть) $7,5-17,5 \mathrm{mкг} / л$. Как видно, уменьшение концентраций фосфатов в море по сравнению с рекой было также весьма значительным - в 2 - 4 раза.

Наряду с уменьшением в самом нижнем течении Волги концентраций минерального фосфора существенно возросла в последнее время конщентрация органического растворенного фосфора, в результате прежде всего развития синезеленых водорослей в волжско-камских водохранилищах. Так, до создания больших водохранилищ (1953-1955 гг.) сток минерального фосфора относился к органическому растворенному как $1: 3$. В 1967-1969 гг. это соотношение составляло 1:6.

Остается неясным, в какой мере растворенный органический фосфор может быть резервом минерального фосфора. В водохранилище и Волгу в районе Волгограда общего фосфора понадает около $50-70$ мкг/л. Тем не менее минерального фосфора в волжских водах на подходе к дельте, как мы уже отмечали, очень мало, причем количество его на взморье еще значптельно снижается. Несомненно, что такое уменьшенне концентраций минерального фосфора сдерживает развитие жизни в Северном Каспии, на что неоднократно указывала Н. И. Винецкая (1952, 1962, 1966a, б).

В итоге рассмотрения и анализа приведенных материалов мы можем отметить следующее: количество фосфатов в водохранилищах по сравнению с речным режимом этих участков Волги до зарегулирования стока возросло; в створе с. Верхнее Лебяжъе общее количество фосфора изменилось незначительно, но резко уменьшился приток минерального фосфора; создание северных водохранилищ (Иваньковского, Угличского и Ры-

бинского) в 1937 - 1941 гт. не могло оуазать значительного влияния на гидрохимическнй режим Волги в целом и в частности на ее нижнее течение вследствие бедности биогенными әлементами нодзолистых и заболоченных почв бассейна Рыбинского водохранилища («Рыбинское водохранилище», 1972) ; наиболее резкое сннжение количества взвешенных веществ произошло между 1946 и 1950 гг. в многоводный период; количество взвесей и минерального фосфора в бассейне Вотги является, видимо, ограниченным: цри обильном стоке в теченпе несколькпх лет подряд концентрации взвешенных веществ и фосфатов могут снижаться; нзменения концентрацией взвептнных веществ и фосфатов в 1958 - 1959 гт. явились результатом создания тлавных водохранилшщ Волжско-Камского каскада в 1954-1955 гг. (Горьковского, Камского, Куйбышевского).

Возникает вощрос, не изменились ли псточники биогенных алементов, в частности фосфора, пштавшие воды Волги в прошлом и пнтающие их в настоящее время.

До зарегулировання стока Волги естетственный уровенный режим определял системность заливания п осушения поймы реки. В половодье в пойме формировались водные әкосистемы, в период межени развивались акосистемы суши. Чередуясь, каждая экосистема обогащалась предшествующей бнопродукцией. В настоящее время на всей площади залитых земель әта системность нарушена, вследствие чего обогащение вод Волги биогенными алементами резжо уменьиилось. Одновременно, видимо, возросла роль биогенных элементов антропогенного происхождения в результате роста городского населения, применения детергентов, фосф̆орных удобрений и т. д.

По данным С. М. Драчева и Л. А. Петуховой (1971), только стоки г. Москвы повышают концентрацию общего фосфора в р. Москве на порядок и увеличивают его содержание в Оке, ниже устья р. Москвы, примерно в 5 раз. По расчетам әтих авторов, Москва сбрасывает ежесуточно $4,4-5,8$ т фосфора (около 2 тыс. т в год). Рост населения и развитие промышленности в бассейне Волги за последние 30 - 40 лет несомненно сопровождались увелнчением обьема сбрасываемых в реку биогеныых әлементов.

Виогенный сток - основа формирования всех звеньев продуцирующей системы Северного Касшия, и мы должны совершенно четко представлять себе источники этого питания и условия насыщения волжских вод бногенными элементамп и прежде всего солями фосфора. Мы должны представлять эти условия не только для данного времени, но и в перспективе с учетом намечающихся цреобразований природы в бассейне Каспийского моря и развития сельского хозяйства.

Наши знания этих вопросов ограниченны, в связи с чем по просьбе редколлегии кандидат географическшх наук Л. Ф. Насулич подготовила номещаемый ниже раздел, дающий представления об особенностях водосборной площади Волги в отношении шитания волжских вод взвешенными веществами и биогенными солями.

О формированни бногенного стока в бассейне Волги

Бассейн Волги представляет собой общирную равнинную территорию, простирающуюся на 1700 км с севера на юг и на $250-1500$ км с запада на восток, весьма разнообразную по свонм физико-географическим условням. На севере бассейна расположена лесная зона - тайга и смешанные леса, в центральной части - лесостеш п стешь, на юге - нолупустыня и пустыня.

Бассейн Верхней Волги расположен в зоне избыточного увлажнения, тде осадки преобладают над испарением. Годовое количество осадков достиғает здесь $500-600$ мм с преобладанием их летом и максимумом в июле. Испарение составляет всего $250-500$ мм. Годовой ноказатель ув-

лажнения $0,35-0,60$. Зммой наотюдается устойчивый снежный покров толщиной $45-60 \mathrm{~cm}$. Среднегодовой поверхностный сток составляет 68 л/сек/км²; преобладает он весной, составляя 60% годового.

В этой части бассейна доминирует эрозионно-моренный рельеф, характеризующийся значительным расчленением поверхности и крутизной склонов от 5 до 15°. Поверхность бассейна представляет собой четвертичные отложения, состоящие преимущественно из морены, флювиогляциальных супесей и песков, покровных суглинков. Шпрокое распространение имеют зандровые равнины со специф̆ичными ландшафтами полесий.

Равнинный рельеф, широкое распространение тяжелых суглинков, избыточное атмосферное увлажнение и высокое залегание грунтовых вод способствуют распространению здесь болот и переувлажнению поверхности почвы. Глубина залегания грунтовых вод колеблется от 0 .до 10 м, минерализация их слабая - $0,1-0,5$, на юге -1 г/л.

По характеру растительности и почвы территория относится к нодзоне южной тайги. Преобладают здесь дерново-подзолистые почвы различной степени оподзоленности и механического состава и почвы болотного типа, сосредоточенные в полесьях.

Почвы формируются на моренных и покровных суглинках, песках и супесях, в условиях промывного режима, обладают кислой реакцией. В этих условиях усиливается растворение минеральных веществ, содержащихся в почве, в том числе п минеральных удобрений, и вынос их из верхних горизонтов почвы в нижние. Глубина проникновения минеральных удобрений в почву зависит от ее механического состава и количества атмосферных осадков.

В Верхне-Волжском бассейне биогенные элементы проникают в речной сток в результате водной эрозии почв, выноса их паводковыми водами с затопляемых окультуренных площадей и ннфильтрации в грунтовые воды. Освоение территории сельским хозяйством - всего $30-40 \%$ общей площади. Поэтому кодичество выносимых бногенных элементов и, в частности фосфатов, в речной сток должно быть небольшим.

Бассейн Средней Волги расположен в пределах лесостенной н стенной ландшафтных зон. Рельеф здесь эрозионный, отличающийся большой густотой и глубиной расчленения поверхности.

Для Среднего Поволжья характерно недостаточное количество атмосферных осадков. За год их вышадает $350-600$ мм, иснарение же составляет $500-800$ мм. Показатель годового увлажнения в лесостепи равен $0,35-0,45$, в степи $-0,15-0,35$. Высота снежного покрова $-20-30$ см.

Среднее Поволжье обладает густой сетью ручьев и рек. Основная масса воды проходит по рекам во время бурного весеннего половодья н составляет $60-80 \%$ годового стока. Среднегодовой поверхностный сток равен 1-4 л/сек/км ${ }^{2}$ в лесостепной полосе и $0,2-1$ л $/$ сек $^{2} /$ км 2 - в степной. Заболоченные участки встречактся лишь в долинах рек. Грунтовые воды залегают на глуб́ине $20-50 \mathrm{~m}$. Минерализация в лесостепной зоне невысокая - до 1 г/л, а в степной - от 1 до 3 г/л и более.

Основная растительность - пироколиственные леса - дубравы и ду-бово-сосновые боры, которые расположены в виде островов среди полей и по балкам, оврагам и в долинах рек. Леса нроизрастают на серых лесных почвах; под степями развиты черноземы - оподзоленные, выщелочепные на севере, тишичные и обыкновенные в центральной части и карбонатные на юге. Почвы формируются на лёссах, лёссовидных суглинках, эллювиях коренных пород, флювиогляцнальных и аллювиальных отложениях. Сельским хозяйством освоено здесь $70-80 \%$ территории.

Для зоны Среднего Поволжья характерна недостаточная обеснеченность водой, часто повторяющиеся засухи и интенсивная водная и ветровая эрозии почв, развитию которых способствует бурное весеннее снеготаяние, летние ливни, легко размывающиеся грунты и интенсивная

распашка стешей. В рассматриваемой зоне шроводятся снегозадержание, нскусственное орошение, полезащитное лесоразведение, специальные севообороты с использованием удобреннй.

Исследование баланса питательных веществ мощных черноземов, проведенное в носледние годы Научно-исследовательским институтом по удобренням и инсектофунгицидам (НИУиФ), ноказало, что азот, поступающий в почву с атмосферными осадками и семенами, примерно покрывает потери его от вымывания. Баланс по фосфору всегда положительный, даже прн однократном внесении его в течение года.

Проведенные Всесоюзным научно-исследовательским институтом удобрений и агропочвоведения (ВИУА) нсследования проникновения минеральных удобрений в глубь черноземных почв показали, что азот и калий накапливаются преимущественно на глубине $20-40$ см, на глубине 40-60 см их значительно меньше. Максимальное накопление фосфора в пахотном горизонте наблюдается на глубнне $0-20$ см, значительно меньше его на глубине 20 - 40 см и совсем мало на глубине $40-60$ см. Такая закономерность обусловлена растворимостью и подвижностью азота и калия в почвах и хорошей закрепляемостью фосфора.

Приведенные данные позволяют предположить, что грунтовые воды в Среднем Поволжье насыщаются минеральными удобрениями в местах их контакта с поверхностными талыми и ливневыми водами, т. е. на дне оврагов, балок и у нодножий склонов речных долин, где они залегают близко к поверхности пли выклиниваются. Верховодка, образующаяся на водораздельных участках с тяжелыми суглинистыми почвами весной и осенью, может выносить минеральные удобрения, особенно в периоды совпадения сроков внесения удобрений с продолжительными дождями.

Нужно отметить, что глубокое выклинивание в речные долины восточного склона Приволжской возвышенности вскрывает коренные породы, содержащие фосфориты, поэтому в твердом стоке протекающих здесь рек возможно повышенное содержание фосфора. Можно преднолагать, что в настоящее время нашбольшие количества биогенных элементов в зоне Средней Волии поступают вследствие смыва удобрений талыми и ливневыми водами с площади пахотных земель !

Нижнее Поволжье расположено в полупустынной п пустынной зонах, включающих возвышенность Ергеней и Прикаспийскую низменность. Полупустынная зона отличается небольшой абсолютной высотой, а пустыня лежит ниже уровня моря. Преобладает равнинный слабо расчлененный рельеф с широко распространеннььи западинами, лиманами и сорамп. Вдоль побережья Каспийского моря наблюдаются обширные масснвы песков с әоловыми формамн.

Для Нижнего Поволжья характерны резкнй дефицит влаги и большое испарение. За год адесь вышадает всего 100 - 300 мм осадков, а испарение достигает $900-1000 \mathrm{mм}$. Годовой показатель увлажнения равен $0,05-0,15$. Снежный покров достигает высоты всего $10-25$ см и лежит недолго. Поәтому поверхностный сток незначителен - $0,2-1$ л/сек/км ${ }^{2}$. Речная сеть не развита, оврагов и балок мало. Талые воды очень скудны и слабо увлажняют почву. Грунтовые воды залегают нетлубоко - от 0 до $5-10 \mathrm{~m}$; они сильно минерализованы - от 3 до 100 г/л, но встречаются линзы пресных вод в лиманах и зашадинах, которые пмеют важное хо-

[^0]зяйственно-бытовое значение. К сожалению, эти пресные воды пмеют сезонный характер и малообильны.

Растительный покров типичен для полупустынь и пустынь, он спльно разрежен, беден видами н представлен в основном злаковьми, полынью и әфемерами. Для растений характерно преобладание подземной массы но сравнению с наземной. Почвы полупустынь каштановые и бурые, сформировавшиеся в зоне тичаково-ковыльных степей в условиях непромывного водного режима. Почвообразующими породами на севере Нижнего Поволжья являются лёссовидные суглинки. Все почвы полупустышь и пустынь отличаются щелочной реакцией.

До недавнего времени Нижнее Поволжье было районом пастбищного животноводства. Только в последние годы здесь начало развиваться орошаемое земледелие - на каштановых почвах выращивают ценные сорта пшеницы. Главнейшими препятствиями для развития здесь земледелия являются недостаток влаги, щелочность, засоленность и слабая окультуренность почв.

По перснективному плану развития сельского хозяйства Нижнее Поволжье входит в новые районы орошения. Здесь начинают освамвать большие площади для возделывания различных сельскохозяйственных культур, развивается садоводство, в Волго-Ахтубинской пойме - рисосеяние (совместо с рыбоводством), создаются многолетние культурные пастбища и луга.

Принимая во внимание особенности каждой из трех зон водосборной нлощади Волги в отношении рельефа, густоты речной сети, количества осадков п велючины испарения, типа почв, распаханности земель, следует признать, что ведущее значение в обогащении вод бассейна Волги взвешенными веществами и фосф́атами принадлежит зоне Средней Волги. Несравненно меньшую роль в әтом процессе итрает зона Верхней Волги. Значение южной зоны в формировании взвешенных веществ и биогенных элементов Волии минимальное. Однако остается не совсем ясным, в какой мере обогащению вод Волги способствует Волго-Ахтубинская нойма, через которую всегда проходило большое количество волжской воды. Но ввиду небольшого выноса фосфатов восточными рукавами дельты в море можно предположить, что в этом отношении значение поймы относительно невелико.

Колебания современного гидрохимического режима
 Касшмйского моря

Солевой состав п тидрохимические характеристики вод Касиийского моря сформировались и изменяются в результате совместного влияния стока рек, газо- и солеобмена с атмосферой, подземной составляющей нонного стока в море и подводного грязевого вулканизма.

Особенности регионального распределения гидрохимических характеристик и гидрохимической структуры морских вод определяются местными фнзико-географнческими уеловиями, динамикой водных масе (особенно в верхнем слое) и конвективным перемешиванием. Последний фактор наиболее важен для глубинных слоев моря.

Обмен химическими субстанциями в процессе газо- и солеобмена с атмосф̆ерой пзучен недостаточно, но в первом приближении его можно считать установившимся. Как показали исследования последних лет, нодземный ионный сток в море несомненно следует учитывать при оценке химического баланса моря, однако имеющиеся данные нозволяют пока делать лишь самые общие оденки. Материалы геологических п геохимических работ, проведенных в Южном Каспии, показывают, что в әтом районе на гидрохимические условия может влиять деятельность подводных грязевых вулканов, расположенных как на щельфе, так и на дне глубоководной внадины. По мнению геологов, в результате деятельности

вулканов на поверхность дна моря происходит высачивание глубинных сильно минерализованных вод (Соловьев, Маев, Юнов, 1961; Юркевич и др., 1962). Это надо пметь в виду при нахождении аномалий гидрохимических характеристик в глубинных слоях воды Южного Каспия.

В настоящей главе гидрохимический режим Каспийского моря и его изменения рассматриваются главным образом в зависимости от характера гидрологических процессов в море. При сравнении с даннымп предыдущих исследований принимаются во внимание изменения стока Волги и его химического состава, происшедшие за последнее время.

Значительное уменьшение стока Волги, составляющего более 70% всего речного стока в море, щронзошло в тридцатые годы, что оказало сильное воздействне на гидрохимические условия в море. Анализ гидрохимических условий на ощределенных этапах жизни моря проводился многими авторами. Детальное исследование этих условий по материалам 1934 г., т. е. практически до падения уровня моря, было выполнено C. В. Бруевичем (1937). Материал, характеризующий период после падения уровня (за 1939-1954 гг.), был проанализирован Б. Н. Абрамовым (1959). Особенности гидрохимического режима моря в 1958-1963 rт. в сравнении с предшествующими тодами весьма подробно рассмотрены в работах А. С. Пахомовой и Б. М. Затучной (1966) п А. С. Пахомовой (1970). Гидрохнмические условия в Среднем Кастии в 1965-1966 гг. изучены Г. Н. Нурмагомедовым (1968а, б). Распределение кислорода в Среднем и Южном Касшии в 1964 - 1966 г. показано А. Н. Косаревым и А. В. Поляковой (1970).

Специальные исследования влияния зарегулирования стока Волги на гидрохимические условия Северного Каспия приведены Н. И. Винецкой (1968), Л. А. Барсуковой (1971).

В настоящей работе әти исследования продолжены. Показано современное пространственное и сезонное распределение гидрологических и тидрохнмических характеристик в Среднем и Южном Каспии. На стандартных разрезах - Жилой-Куули, Дивичи-Кендерли и Куринский Камень - Огурчинский были определены соленость, плотность, величина pH , содержание кислорода, фосфора, нитратов и кремния. Большинство разрезов было выполнено в августе, ноябре и феврале 1968-1969 и 1970-1971 гг., причем зима 1968/69 г. была холодной, а 1970/71 г.теплой. Кроме того, были составлены таблицы вертикального распределения кислорода, pH , фосфора и кремния в Среднем и Южном Каспии в 1965-1970 тг. и солености - в 1965-1968 гг., проведено их сопоставление с данными Пахомовой за 1958-1963 тг. Такой анализ позволяет детально показать современные гидрохимические условия Касшийского моря и их изменения за последние годы.

Соленость. Сравнение относительного содержания солеобразующих компонентов показало, что существенных изменений солевого состава вод Северного Касния за период с 1938 по 1968 г. не произошло. Расчеты солевого баланса моря показывают, что средняя соленость Касшия за последние $50-60$ лет остается постоянной и находится в пределах 12,82-12,86\% (Архинова и др., 1972). Однако в Северном Касшии соленость претерпевает существенные изменения. Под влиянием гидрометеорологических условий в разные сезоны и годы наблюдаются изменения солености и в некоторых прибрежных районах Среднего и Южного Касшия.

Волжские воды, поступающие в море по западным рукавам дельты, в основном выносятся в Средний Каспий, причем преимущественно вдоль вападного побережья. В половодье эта тенденция сохраняется, однако опреснение западной части происходит более широким фронтом. Волжские воды, выносимые в море по восточным рукавам дельты, поступают в основном в восточную часть Северного Каспия. Воды р. Урал опресняют предустьевое пространство, а в половодье - и мелководный район

восточного прибрежья. Опреснение Северного Каспия в результате прохождения речных полых вод длится с мая по пюль (Катунин, 1971). Речной сток, вступая во взаимодействие с солеными водами моря, снижает соленость в отдельных районах Северного Каспия от 12,5 до 3 4%.

Наиболее значительные вертикальные и горизонтальные традиенты солености наблюдаются в районе свала глубин, на границе между Ce верным и Средним Каспием, где происходит интенсивное перемешивание опресненных северокаспийских вод с более солеными среднекаспийскими. Вертикальные градиенты солености здесь могут доходить до 10% -

В настоящее время сохраняется основная закономерность распределения солености на поверхности в Среднем п Южном Каспии. Величина ее возрастает в направлении с севера на юг и с запада на восток. Это объясняется опресненнем вод вблизи западного берега под влиянием речного стока и осолонением поверхностного слоя у восточного берега в итоге интенсивного испарения в условнях жаркого климата прилегающих нустынь. Здесь соленость достигает $13,6-14,0 \%$, а в мелководных задивах и бухтах бывает еще выше.

В открытой части моря соленость достигает в среднем 12,80 $12,90^{\%} \%$. С глуб́нной, как правило, среднне годовые величшны солености возрастают, но весьма незначительно (ва $0,05-0,20 \%$). Многолетние колебания средних годовых величин солености тоже невелики не более $0,2 \%$. Сезонные изменения солености также малы и не превышают в Среднем и Южном Кастии $0,10-0,15 \%$.

Сравненне распределения сотености на разрезах в 1965-1968 пг. с данными А. С. Пахомовой (1970) за 1958-1962 гг. показывает, что на разрезе Чечень - Мангышлак произошло повышенне солености на $0,2-0,5 \%$. Слабое увеличение солености отмечено на разрезе ДивичиКендерли, а на разрезе Жнлой-Куули соленость в основном не нзменялась. На разрезе Куринский Камень-Огурчинский в верхнем слое наблюдалось даже некоторое уменьшение солености, а в глубинных слолх она осталась практнчески неизменной.

Таким образом, анализ данных за 1965-1970 гг, ноказывает, что основные закономерности и горизонтального и вертикального распределения солености в глубоководных районах моря остались прежними. Увеличилась межгодовая изменчшвость солености. В северных районах моря соленость новысилась в среднем на $0,5 \%$, а в Южном Каспии существенных изменений солености не отмечено.

Распределение кислорода. Несмотря на замкнутость, в Каспийском море имеются весьма благоприятные условия для аэрации вод. Высокое насыщение шх кислородом, особенно в глубинных слоях, пронсходит тлавным образом вследствие интенсивного развития процессов плотностного перемешивания, уснлившегося после осолонения Северного Каспия в результате уменьшения стока Волги.

Наибольшее содержанше кислорода паблюдается зимой в северной части моря, благодаря низкой темшературе воды и хорошему перемешиванию, быстро распространяющемуся до дна. Как показали әкспедиции МГУ, абсолютное и относительное содержание кислорода у кромки льда весьма высоко. Зимой 1965 , 1969 и 1970 гт. абсолютное содержание кислорода вблщзи дедовой кромки достигало $9,0-10,5$ мл/л, а относительное доходило до $110-120 \%$ (свидетельство высокого бнологического продуцировання). В 1966 и 1968 гг. содержание кислорода у кромкп снизилось до $6,0-7,5$ мл/л, что было обусловлено интенсивным подтоком среднекаспнйских вод - теилых п менее насьщенных кнслородом.

Высокое содержание кислорода в Северном Касиии зимой подтверждается данными, полученными Астраханской гндрометобсерваторней в феврале 1964-1965 гг. во время наблюддений, выполненных со льдов. Во время этих работ подо льдом содержание кислорода достнгало 10 -

Рпс. 9. Распределение величины абсолютного содержания кислорода в Каспийском море в верхнем слое (в мл/л) зимой (а) и летом 1965 г. (б)
$11 \mathrm{~m} /$ /л, причем иногда наблюдалось даже пересыщение воды кислородом. В феврале 1964 г. в центральной частп разреза о-в Новинский -о-в Кулалы пересыщение у дна достигало 170% при однородной темџературе во всем слое воды и повышенной величине рН.

Именно вблизи кромки льда вследствие интенснвного охлаждения воды и льдообразования происходит повышение плотности вод и они сползают по склонам в глубинные слои среднекаспийской впадины, насыщая их кислородом и улучшая вентиляцию ${ }^{1}$.

Благодаря интенсивному конвективному перемешиванию в Среднем Каспии зимой, его воды в это время года отличаются высокими величинами и однородным вертикальным распределеннем кнслорода. Следует, однако, отметить, что поскольку содержание кислорода в придонных слоях определяется условиями развития зимней циркуляции, оно может существенно изменяться в различные по суровости зшмы. В настоящее время на акватории Среднего Каспия зимой преобладает содержание кислорода на поверхности $7,5-8,5$ мл/л, а иногда и более высокое (рис. 9). Относительное содержание кислорода составляет $90-100$, пногда 110%.

В слое воды, где зимой происходит конвективное перемешивание ($0-150,200 \mathrm{~m}$, иногда глубже), содержание кислорода также бывает высогнм - $5-6$ мл/л. На нижней границе этого слоя вертикальный градиент кислорода резко возрастает і его содержание уменьшается в среднем до $3,0-3,5$ мл/л (около 30%). В суровую знму 1968/69 г., когда перемешивапие в Среднем Каспии распространядось до дна и вертикалыные градневты плотности почти отсутствовали (во всем слое воды плотность составляла $10,9-11,0$), содержание кислорода на разрезе Дивичи - Кендерли в слое 0 - 300 м доститало 7,0 , а вблизи дна 5,0 $6,0 \mathrm{mI} / \pi$ (рис. 10). Однако высокое содержание кислорода у дна в Среднем Каспии - более $5,0 \mathrm{mл} /$ л (около 70%) - отмечалось і в марте 1971 г., хотя зима была теплой.

[^1]

Рис. 10. Вертнкальное распределенне аб́солютного содержания кислорода в Каснийском море (в мл/л) на разрезах Дивичи - Кендерли (б) и о. Куринский камень 0. Огурчннскиії (a, b, z)

В глубоководных районах Среднего Касния знмой может происходить нодъем ллубинных вод с низким содержанием кислорода ($2,5-3,0 \mathrm{mл} / \boldsymbol{\pi}$) и тогда в слое 200 - 400 м образуется промежуточный минимум кислорода, а в слое от 400 m до дна его содержание новышается до 3,5 4,0 мл/л. Такое распределение кислорода обусловлено сползанием обогащенных кислородом северокаспийских вод в глубинную часть Среднего Каспия и компенсационным подъемом придонных вод, обедненных кислородом.

В Южном Касшии, где знмой температура воды выше, наблюдается более низкое содержание кислорода. Так, по данным за 1964-1972 гг. средняя величина его на поверхности была равна $7,0-7,5 \mathrm{mл} / \boldsymbol{\text { (око- }}$ ло 100%), а нногда снижалась до 6,7 мл/л. Для прнбрежных районов характерно более высокое содержание кнслорода - $8,0-8,5$ мд/л, что обусловлено большим охлаждением воды.

В аномально геплую зиму $1965 / 66$ г. в открытых районах Южного Каспия наблюдалось повышение относительного содержания кислорода (до $105-110 \%$); это согласуется с почти полным отсутствием здесь фосфатов п свидетельствуот о том, что деятельность фитопланктона зимой пе затухала. Однако средние значения относительного содержания кислорода ($95-100 \%$) и величины содержания фосфатов (до $20 \mathrm{~m} \mathrm{\kappa г} /$ л) в новерхностном слое показывают, что зимой в Южном Каспин развитие фитопланктона обычно прностанавливается и содержание кислорода в верхнем слюе определяется в основном температурой и адвекцией вод течениями.

Вертшкальное распределение кислорода в Южном Каспии зимой определяется теми же закономерностями, что и в Среднем. В слое, охваченном конвекцней ($0-50,100$ м), содержание кнслорода высокое - более 6 мл/л, а на нижней границе этого слоя уменьшается до 3,5 5,0 мл/л. На самых больших глубинах содержанне кислорода составляет 1,7-2,2 мл/л.

Здесь так же, как и в Среднем Каспии, отмечаются ситуации, когда в слое $200-300$ м наблюдается промежуточный минимум кислорода
($2 \mathrm{mл} / \boldsymbol{\pi}$), обусловленныѝ подъемом обедненных кислородом вод из придонных слоев, на что указывает куполообразный характер изоксиген. В придонных слоях, куда поступают более аәрированные среднекаспийские воды, содержание кнслорода тогда выше ($2,5-3,0$ мл/л).

Различие в вертикальном распределении кислорода хорошо видно ири сравнении данных, полученных на разрезе Куринский Камень - Огурчинский в феврале 1969 г. и в марте 1971 г. В первом случае воды в занадной половине разреза были хорошо охлаждены и перемешаны до дна и содержание кнслорода в придонном слое превышало 6 мл/л, а в восточной половине разреза было около $2,0 \mathrm{mл} / \boldsymbol{д}$ (рис. 10). В тешлую зиму $1970 / 71$ г. в марте на этом разрезе в слое $100-200$ м четко выделяется нижняя граница распространения зимней конвекции по резким вертикальным градиентам кислорода (его величина меняется от 6 до 3 мл/л). В придонном слое наблодалось ннзкое содержание кислорода - 2,12,4 MI/J.

В восточной части Южного Каспия происходит сползание охлажденных и осолоненных вследствие интенсивного пспарения вод в глубинные слои южнокаспийской впадины. Основная же аәрация этих слоев происходит в результате поступления через Апшеронский порог и дальнейшего опускания среднекаспийских вод,

Весной в Каспии горизонтальное распределение кислорода на поверхности было более однородным, чем зимой. По данным 1964-1966 гт., в апреле в Среднем Каспии абсолютное содержание кислорода было 6,9 7,9 , а в Южном $-7,0-7,4$ мл/л, что в основном соответствует 100 и более щроцентам насыщения. Повышенное содержание кислорода свидетельствует об усиленном фотосинтезе фитопланктона. В Среднем Каспии содержание кислорода в верхнем слое ниже, чем в более глубоких. Это вызвано начавшимся прогревом верхнего слоя воды, тогда как на глубине сохраняются обогащенные кислородом слои в результате зимней конвекции.

Летом содержанне кислорода в верхнем слое воды ниже, чем зимой, что обусловлено значительным повышением температуры п потреблением кислорода на биохимические процессы. Распределение кислорода по акватории Среднего и Южного Кастия равномерное. Среднее содержание кислорода в верхнем слое воды в Среднем Касшии - 5-6 мл/л (иногда $6,5 \mathrm{mл} / л$), а в Южном $-5,6-6,0$ мл/л (т. е. $95-100 \%$). Такое ненолное насыщенне кислородом верхнего слоя указывает на то, что летом в Среднем п Южном Касиии потребление кислорода на окислительные процессы преобладает над фотосинтетическпм продуцированием. В Южном Каспин наблюдается более подное насыщение вод кислородом, поскольку здесь, в более теплых водах, процесс фотосинтеза развит сильнее. Так, летом 1967-1971 гт. в Южном Каспии относительное содержание кислорода в поверхностном слое достигало 110 и даже 120% (значительно выше, чем в прошлые годы). Это указывает на интенсивную деятельность фитопланктона.

По всей акватории моря на глубинах $10-30$ м летом наблюдается резкий термоклин, который прешятствует распространенню кислорода в глубинные слоп моря и характеризуется его подповерхностным максимумом ($6-7$ мл/л) на нижней границе термоклина. Образование максимума, по-вндимому, связано с уснлением фотосннтеза фитопланктона в этом слое высокой плотностной устойчивости. У восточного берега Среднего Каспия, тде летом наблюдается интенсивно развитый апвелинг, термоклин размыт, а содержание кислорода повышено (до $6,5-9,0$ мл /л) во всем слое вследствие лучшей его растворимости при пониженной темнературе.

С глубиной содержание кислорода убывает сначала медленно, так как в слое $100-200 \mathrm{~m}$ сохраняются повышенные его величины вследствие зимнего обогащення. На ннжней границе слоя зимней конвекции наблю-

даются резкпе вертикальные градиенты кислорода - его содержание уменьшается с 5-6 до $3-4$ мл/л. Далее в направлении дна кислород снова постепенно уменьшается до $2,7-3,3$ мл/л в Среднем Касшии и $1,5-2,2$ мл/л в Южном. При этом существенное значение имеют условия перемешивания и насыщения глубинных вод кислородом, наблюдавшиеся в прошедшую зиму. Насыщение кислорода летом в придонных слоях составляет $20-30 \%$.

Осенью содержание кислорода в море снова повышается и к зиме достигает максимальных величин. Насыщенность кислородом понижается, так как затухают процессы фотосинтеза. Слой плотностного скачка размывается, и кислород довольно равномерно распределяется по глубине. Суточные изменения кислорода наиболее отчетливо выражены в верхнем слое, где их величнна наибольшая, у дна они малы. Наибольшее изменение кислорода наблюдается не на поверхности, а на горизонтах $20-25 \mathrm{~m}$, что объясняется повышенной интенсивностью процессов фотосинтеза в слое термоклина.

За последние $50-60$ лет в кислородном режиме Каспийского моря пронзошли существенные изменения, обусловленные пзменением его гидрологического режима. Первые подробные наблюдения за распределением кислорода в Каспии были проведены Н. М. Кнщюовичем в 1914-1915 ғг. По ето данным, высокое содержанне кислорода наблюдалось в слое 0100 m, в слое $200-400 \mathrm{~m}$ оно снижалось, а с 500 m и до дна не превышало 1 мл/л. В придонных слоях кислород отсутствовал (Средний Каслиї) или был выражен долями миллилитра на метр (Южной Каспий). в Среднем Каспии на 700 м п даже на меньшей глубине имелся сероводород, в Южном Касшии он встречался лишь пзредка в наиболее глубоких слоях.
C. В. Бруевич (1937) детально проанализировал распределение кислорода и других гшдрохимических характеристик в Среднем и Южном Каспии в 1934 г. Он отмечал присутствие кислорода в количестве 0,13 0,64 мл/л на больших глубинах Среднего Каспия, а на глубинах ниже 700 м - в Южном Каспии присутствие сероводорода в количестве $0,29 \mathrm{mJI} /$ л (Пахомова, Затучная, 1966).
Б. Н. Абрамов (1959), изучавший распределение кислорода и биогенных веществ в 1939-1954 тт., сравнил их значения с величинами, наблюдавшимися в предшествующие годы (1934-1938). Он отмечал, что в период интенсивного снижения уровня моря (1934-1954 гг.), начиная с лета 1937 г., глубинные воды Среднего Каспия начали обогащаться кпслородом и к 1943 г. его содержание в них достигло максимума, после чего колебания были незначительными и происходили на высоком уровне. В Южном Кастии процесс обогащения глубинных вод кислородом происходил значительно медленнее.

С 1937 по 1940 г. возросли концентрации фосфатов в верхнем слое моря и уменьшилась их концентрация в придонных слоях. Такие же изменения произошли в распределении нитритов и кремния. Все перечисленные явления Б. Н. Абрамов объясняет усилением вертикальной циркуляции в период падения уровня моря н сползанием аәрированных вод в глубннные слои моря.
А. С. Пахомова, сравнившая данные по кислороду за 1958-1962 тт. с материалами 1934-1943 гг., пишет, что это сравнение убедительно указывает на обогащение кислородом вод Каспийского моря в настоящее время. Концентрация кислорода во всей толще вод значительно возросла. В то же время отмечается некоторое обеднение кислородом вод на ередних горизонтах (Пахомова, Затучная, 1966).

Наши исследования, а также расчеты, проведенные А. С. Пахомовой, подтверждают, что повышение содержания кислорода в глубинных слоях моря вызвано усилением процесса сползания охлажденных, богатых кислородом п обладающих высокой плотностью вод по склонам дна

в глубинные слои среднекаспийской впадины. В глубинные слои Южного Каспия глубинные среднекаспийские воды поступают через Апшеронский порог (рис. 11).

В чем причина усиления атого процесса после понижения уровня моря? Плотность вод, охлаждающихся в районе свала глубин на границе между Северным п Средним Каспием, а следовательно и глубина пх сползания могут быть весьма различными, в зависимости от температуры воды и солености в әтом районе. Пронсшедшее за последнее время уменьшение стока Волти и связанное с ним осолонение северной части моря привело к увеличению плотности вод на свале глубии и повысило воз-

Рие. 11. Распределение условнй шлотности воды в Каспийском море на разрезах Дивичи - Кендерли (а) и о. Куринскиїі камень - о. Огурчинский (б)

можность вентвляции тлубинных слоев средней части моря. В феврале плотность на разрезе Чечень-Мангышлак достигает 11,2-11,4. Воды с такой шлотностью могут опускаться до придонных торизонтов в котловине Среднего Касния.

Указанная возможность формирования тлубинных вод Среднего Каспия вследствие сползания по склонам дна охлажденных вод была подтверждена вынолненным в Государственном океанограф̆ическом институте анализом распределения условной плотности зимой. Анализ показал, что возможность опускания северо-каспийских вод до дна Дербентской котзовины, как это было в 1941 и 1962 тг., действительно существует и что такой возможности не было в 1915 и 1934 гт. (Пахомова, Затучная, 1966). Следует иметь в виду, что сползающие охлажденные воды замещаются солеными и более теплыми водами, поступающими в район кромки льда из Среднего Каспия. Здесь они охлаждаются и, приобретая весьма высокую плотность, в свою очередь опускаются в гауб́инные слои моря, т. е. в районе кромки дьда устанавливается своеобразная циркуляция вод, обеспечивающая хорошую вентиляцию самых тлубинных слоев Среднего Каспия. На развитие этой циркуляции влияет и температура воды в северном районе Среднего Каспия, которая может отличаться на $2-3^{\circ}$ в разные по суровости зимы.

Вентиляция глубинных слоев Южного Каспия происходит вследствие ноступления среднекаспийских вод и поскольку возможная ғлубина нх опускания по южному склову Ашшеронского порога увеличилась, улучшились и условня вентнляции глубннных вод южной части моря, хотя процесс этот начался позже и происходил с меньшей ннтенсивностью.

Современные условия возможности вентиляции глубинных слоев Каснийского моря хорошо иллюстрируются распределением плотности воды и кислорода на меридиональных разрезах через Средний и Южный Каспий, выполненных әкспедициями МГУ как зимой, так и летом. Распределение условной плотности на таком разрезе зимой 1965 гг. показано на рис. 12.

Проведенный нами анализ распределения кислорода в 1965-1970 гг. характеризует период относительной стабильности стока Волги и соле-

ности Северного Каспия, установившейся на новом уровне. Поәтому изменения глубнны распространения зимнеї конвекции определяются теперь в основном суровостью зимы п степенью охлаждения вод. Сравнение наших данных с данными А. С. Пахомовой за 1958-1962 гг. показывает, что распределение кислорода в основном осталось примерно таким же. Как верхние, так и глубинные слои воды Каспийского моря достаточно насыщены кислородом, прнчем в Среднем Каспии насыщение выте, чем в Южном. Вместе с тем следует отметить, что и в Среднем, и в Южном Каспии среднее содержание кислорода в верхнем слое увеличилось на $0,3-0,5$ мл/л, а в глубинных слоях уменьшилось на 0,1 -
12. Распределенне ус довной плотности в Каспийском море на мерндионалыном разрезе по 51° в. д.

0,4 мл/л. Таким образом, вертикальная стратиф̆икация кислорода несколько увеличилась, что характеризует относительную стабнльность условий аәрации (можно предположить, что некоторое влияние на уменьшение насыщения кислородом глубинных слоев воды вызвано тем, что в $4965-$ 1970 гг. наблюдалось несколько теплых зим).

Активная реакция (pH). По сравнению с океаном п другнми морями активная реакция каспийской воды повышена, что обусловлено ее большим щелочным резервом. Так же, как и кислород, pH пзменяется ло сезонам в связн с разной интенсивностью бнохимическнх п физикохимических процессов. Сезонные пзменения pH хорошо выражены в зоне фотосинтеза (до $50-100 \mathrm{~m}$), ншже и до дна они значительно меньше. В завнсимости от физико-географических и гшдрологических условий величина pH меняется в различных районах моря от $8,5-8,6$ на новерхности до $7,9-8,0$ у дна.

Наблюдения, проведенные зимой 1970 г., показали, что у жромки льда величина рН была высокой - $8,3-8,4$ в верхнем слое воды п $8,25-$ 8,35 у дна. В Среднем Касшии зимой значения рН в верхнем сслое изменялись от 8,2 до 8,4 , увеличиваясь с запада на восток. В феврале 1969 г. вблизи восточного берега величина pH достигала 8,5 (рис. 13). При хорошем перемешивании величина рН плавно уменьшается с глубиной и у дна равняется $8,15-8,20$.

Высокие величины рН наблодаются зимой и на разрезе Жилой-Куули - от 8,3-8,4 до 8,5-8,6.

В Южном Ғасшии змой велнчина рН в верхнем слое также увеличивается с запада на восток с 8,3 до 8,5 . Такое распределение pH соответствует повышению температуры воды зимой с севера на ю и с запада на восток. Кроме того, в южной части моря и зтмой возможна (хотя и слабая) жизнедеятельность фитопланктона, т. е. потребление углекислого таза.

В слое $100-200$ м в Южном Касиши зимой наблюдаются значительные вертикальные градненты pH , отмечающие ннжнюю границу проникновения зимней конвекции. В этом слое величнна рН уменьшается с

Рис. 13. Расцределение pH в Касшийском море на разрезах Дивичи - Кендерли ($a, 6$) и о. Курринский камень - о. Огурчинский (\quad, г)
$8,35-8,40$ до $8,15-8,20$. В иридонном слое величина pH равна 7,95 8,10. Максимальная величина рН в Южном Каспии в 1967-1971 гт. была 8,60.

Летом в верхнем слое воды Среднего Каспия величина рН составляет $8,4-8,5$; особенно высокие значения pH наблюдаются в северозападном районе, где биохимические процессы протекают наиболее интенсивно. Только вблизи восточного берега, в зоне летней температурной аномалии, величнна pH уменьшается до $8,1-8,2$, что отражает химические условия холодных глубинных вод, выходящих здесь к новерхности. В глубинных слоях Среднего Каспия сохраняются низкие значения $\mathrm{pH}-8,0-8,2$.

На разрезе Жилой-Куули летом величина рН уменьшается от поверхности до дна от $8,4-8,5$ до $7,9-8,2$. В Южном Каспии в верхнем слое pH равняется в основном $8,4-8,6$, а с глубиной уменьшается до $8,0-8,2$.

Сопоставление величин pH , наблюдавшихся в 1965-1974 гг., с данными А. С. Пахомовой за 1958-1962 гг., показывает, что характер распределения pH и ее средние величины сохранились такими же, однако максимальные значения в верхнем слое отмечались выше, что увязывается и с увеличением содержания кислорода. В некоторых ситуациях отмечается и повышение величины pH в делом на разрезах, например при сравнении распределения pH на разрезе Дивичи-Кендерли зимой 1962 и 1971 гт.

Биогенные вещества. Основной источник биогенных веществ - речной сток. В связи с зарегулированием стока Волти в 1956 п 1959 ш. поступление биогенных веществ в море значительно изменилось, биогенное шитание Каспия ухудшилось. Помимо речного стока поступление биогеншых веществ в море может происходить с ионным подземным стоком, а также в результате деятельности нодводных грязевых вулканов. В последнем случае могут фиксироваться локальные «пятна», «ядра» биогенных веществ, отличаюпиеся но величине от их обычного распределения в данном слое воды. Однако, как уже отмечалось, доля нодземного стока и вулканизма в биогенном шитании моря почти не пзучена.

Фосфатьь. В Каспийском море концентрашии фосфатов за очень редким исключением не превышают $60 \mathrm{mкг} /$ л. Они значительно меняются

ТАЕЛиЦА 3
Среднее многолетнее распределение фосфатов (в мьг/л) в Среднем и Южном Каспии

$\begin{aligned} & \text { Глубина, } \end{aligned}$	1958-1963 re .		1906-1970 Ir .			
	Средний Каспий	ЮжІыД Каспии	I	IV	VI	VIII
0	8,3	6,6	6,4	7,5	9,2	7,2
10	7,0	5,8	6,1	6,4	6,6	7,3
25	5,8	5,2	4,9	6,3	6,0	5,0
50	9,6	6,7	-	9,8	8,7	7,2
75	-	-	-	13,8	15,9	-
100	13	13	-	13,4	17,9	11,6
150	-	-	-	18,0	18,4	16,5
200	21	24	-	21,5	22,6	21,5
300	24	30	-	23,6	-	27,9
400	28	32	-	26,9	-	31,7
500	33	33	-	32,7	-	32,7
600	34	40	-	34,8	-	36,1
700	35	40	-	31,6	-	40,3
750	35	45	-	35, 3	-	43,3
800	-	-	-	-	-	-

Прпмечание. Разрезы: I - Чечень - Мангышлак, БIV - Дивичи - Кендерлн, VI - Жилой Куули, VIII - Куринский Камень - Огурчинский.

с глубиной (табл. 3) (рис. 14). В верхней фотосинтетической зоне содержание фосфатов снижено вследствие потребления их фитопланктоном. С глубиной содержание их сильно возрастает, благодаря окислению падающего сверху органического вещества и регенерации фосфатов. Глубже $400-500$ м этот процесс несколько замедляется в связи с уменьшением содержания в воде кислорода, и поэтому у дна в сравнении с лежащими выше слоями иногда отмечается уменьшение фосфатов (Пахомова, 1970).

Специальные наблюдения, проведенные зимой 1969 г., показали, что во льдах Каспия содержится весьма высокое количество фосфатов, в $2-5$ раз больше, чем в прнледных водах: соответственно $8,6-16,7$ и $2,5-3,9$ мкг/л. Во льдах содержатся также и повышенные концентрации нитратов. Следовательно, при таянии льдов воды Северного Каспия существенно обогащаются әтими важнейшими минеральными питательньги солями, что должно способствовать интенсивному развитию весной у кромки льда фито- и зоопланктона (Орадовский, Филонов, 1972).

В Среднем и Южном Каспии фосфаты распределяются следующим образом, В западной ноловине моря содержание фосфатов в поверхносгном слое выше в результате влияния речного стока. По данным 19641966 гг, зимой у западного берета Среднего Касшия, оно достигало $40 \mathrm{mкт} /$ д, а у восточного - всего $9-10$ мкг/л. В центральных районах количество фосфатов было высоким $-20-40$ мкг/л. В меридиональном нащравлении оно увеличнвалось с севера на юг, достигая 40 мкг/л на границе с Южным Каспием. По вертикали зимой в Среднем Каспии количество фосфатов возрастало с глубиной почти на 20 мкг/л. Зимой 1965/66 г. в Среднем Каспии наблюдались более низкие величины фосфора, чем в два предыдущих года: 6-10 мкг/л на поверхности и 2527 мкг/』 у дна. Однако такое пониженное содержание фосфора, возможно, объясняется тем, что эта зима была аномально теплой и деятельность фитопланктона не прекращалась.

Рис. 14. Распределение фосфатного фосфора в Каснийском море (в мкг/д) на разрезах Дивичи - Кендерли (a, б) и о. Куринскнй камень - о. Огурчинскпїї ((

Летом 1964-1966 тг. распределение фосфатов в Среднем Каснии характеризовалось, хотя и меньшими, чем зимой, но все же значительными величинами во всей толще воды - от 10 до $30 \mathrm{mкг} /$, за псключением слоя $0-25 \mathrm{~m}$, где они интенсивно потреблялись. В районе апвелинга у восточного берега количество фосфатов летом было выше, чем в открытом море, и изменялось на поверхности от 5-10 до 30 мкг/л в связи с поступлением фосфора из глубинных слоев моря (Пахомова, Косарев, 1972).

В Южном Касшии содержание фосфатов зимой в верхнем слое составляло $5-10$, пногда доходя до 20 мкт/л. Ниже слоя фотосинтеза количество их аначительно увеличивается с глубиной - до 60 мкт/л. В феврале 1969 г. на разрезе Куринский Камень - Огурчинский у дна нх было 67 мкт/л.

Летом в южной части моря содержание фосфатов в слое фотосинтеза уменьшается почти до нуля в связи с интенсивным потреблением, а с глубиной постепенно возрастает до $10-20$ мкт/л.

Таким образом, наибольшее количество фосфатов наблюдается в глубинных слоях Южного Касшия, в средней части моря запасы их меньше, так как здесь наблюдается более ннтенсивная вентиляция тлубинных вод, обеспечивающая вынос фосфатов на поверхность. В верхнем слое воды в Южном Каспии содержанне фосфатов также выше, чем в Среднем.

Сравнение величин фосфатов, наблюдавшихся в 1965-1970 гғ., с данными А. С. Пахомовой, показывает, что в основном они отличаются незначительно, за исключением отдельных локальных отклонений. Такое распределение фосфатов свидетельствует о том, что их баланс в море, нарушенный изменением величины и распределения стока Волги, в настоящее время установился на новом, показанном уровне.

Нитраты. Из всех форм связанного азота наиболее важное вначение в море пмеют нитраты. Они ннтенсивно потребляются фитопланктоном, поәтому прн развитии фотосинтеза количество их в поверхностном слое быстро пстощается и падает до аналитического нуля. Пополнение интратов в зоне фотосинтеза происходит из глубннных слоев.

В Среднем Каспии в течение года напбольшее содержанше нитратов и равномерное распределение их с глубиной наблюдается зимой и объясняется как отсутствием нотребления их в это время года, так и поступлением нх из глубинных слоев в результате интенснвной зимней циркулящии.

В 1966 г. распределение нитратов в Среднем Каспии было исследовано Т. Н. Нурмагомедовым (1968). Зимой концентрация их в верхнем слое воды колебалась от 0 до 38 (в среднем 5,1) мкт/л, а летом на новерхности они повсеместно отсутствовали. Наибольшее количество нитратов - $30-38$ мкг/л было отмечено в районе о-ва Чечень, наименьшее $0-0,1$ мкг/л - в центральной и восточной частях Среднего Касшия. С глубиной концентрация нитратов увеличивалась, особенно сильно с тлубины $100-200$ м.

Сравненне данных А. С. Пахомовой 1961-1962 тг. с материалами C. В. Бруевича за 1934 г. показывает, что распределение нитратов по глубине стало более равномерным, тогда как раньше содержание нитратов достшало $150-160 \mathrm{mгк} / л$, в 1961-1962 тг, оно колебалось около $85 \mathrm{mкг} /$ д в средней части моря и около $50 \mathrm{mкг/л} \mathrm{в} \mathrm{южной} .\mathrm{В} \mathrm{глубин-}$ ных торизонтах ($700-800 \mathrm{~m}$) содержание нитратов понижалось до нуля. В 1961-1962 гт. этого не обнаружено, минимальное количество ннтратов было $60-70$ мкг/л в Среднем Кастии и $50-10$ мкт/л в Южном. Все эти изменения в распределении ннтратов вполне согласуются с более однородным распределением по вертикали pH и кислорода (Пахомова, 1970).

По данньт А. С. Пахомовой, в 1960-1962 тг. зимой количество нитратов в Среднем Касшии было $40-76$, летом $-3-82$ мкг/л. Зимой 1966 г. концентрация нитратов повышалась с глубиной с 5,1 до 145 мкг/л, т. е. вертикальная стратификация была выражена тораздо резче. Значительное увеличение нитратов происходило в слюе 100 - 200 м. Зимние величины нитратов на всех горизонтах были всегда выше летних.

В Южном Каспии зимой содержанне нитратов в верхнем слое было значительно меньше, чем в Среднем, что свидетельствует об их потреблении і, следователно, о развитии фитопланктона.

Кремний. Количество кремнекислоты в морской воде пзменяется в широкшх пределах. Минимальные концентрации редко бывают меньше $100 \mathrm{mkт} /$ л, максимальные могут превышать 3000 мкг/л. Источник кремнекислоты в море - материковый сток, поэтому по содержанию и распределению кремния в верхнем слое можно судить о влиянии речных вод в море. Источниками кремния в глубинных слоях Каспия могут быть подземный ионный сток и деятельность нодводных грязевых вулканов.

На севере Среднего Каспия содержание кремния увеличивается от зимы к лету, что связано с внутригодовым распределеннем речного стока, ностушающего в Северный Каспий. Распределение кремния в верхнем обедненном слое Среднего Каспия в холодное и теплое время года различно. Зимой обогащается его западная часть вследствие влияния речного стока. Так, например, в этом районе содержание кремния в феврале 1969 г. составля:о $750-1000$ мкг/л, а вблизи восточного берега 500 мкг/л. Неравномерное распределение кремния в этих районах наблюдалось и в марте 1971 г. Так, Г. Н. Нурмагомедов (1968) также указывал, тто зимой 1966 г. поверхностный слой в западном и центральном районах Среднего Касния был более богат кремнием, чем в восточном (соответственно $400-600$ и 300 мкт/л).

Вертшкальное распределение кремния зимой в Среднем Каспии существенно зависит от степени развития вертикалной циркуляции и неремешивання вод. В феврале холодной зимы 1968/69 г., отличавшейся интенсивно развитыми процессами перемешивания в Среднем Каспии, содержание кремння во всей толще воды составляло $750-1000$ мкт/л (причем у дна оно даже несколько уменьшалось).

В Южном Касшии в ноябре 1968 и 1970 гг. в слое от поверхности до тлубины 100 m колнчество кремния было равно нулю, за исклочением западного района, где оно увеличивалось до $300-400$ мкт/л под влиянием стока р. Куры. Глубже происходило закономерное увеличение количества кремния до $1500-2000 \mathrm{mкг} /$ д [следует отметить, что, по данным А. С. Па-

хомовой (1966), в верхнем слое Южного Каспия осенью отсутствие кремния не наблюдалось]. Знмой 1970/71 г. на разрезе Куринский Камень Огурчинский содержанне кремния в верхнем слое несколько возрастало, до $200-500 \mathrm{mкт} / л$. В феврале 1969 г, такое же содержание кремния наблюдалось во всей толще воды в зашадной части разреза. В восточной его частн, где сохранялась устойчивая стратификация вод, оно увеличивалось до 2500 мкг/д у дна.

В марте тешлой зимы 1970/71 г. наблюдалась четкая вертикальная стратификация кремния; содержание его возрастало ко дну от $1000 \mathrm{mkг} /$ л на горизонте 200 m до $3000 \mathrm{mкт} / \boldsymbol{\text { I }}$ более у дна. Такое содержание кремния в глубинных слоях Южного Каспия было существенно выше, чем в 1958-1963 тг. (Пахомова, 1970). Не исключена возможность его поступления в результате деятельности подводных трязевых вулканов, имеющихся в Южном Касиии в значительном количестве ${ }^{1}$.

Сравнение вертикального распределения кремния в Среднем и Южном Каспии паказывает, что в верхнем слое воды ($0-200,300$ м) количество его в средней части моря больше, что объясняется поступлением кремния с речным стоком прежде всего в әту часть моря. В глубинном слое, наоборот, количество кремния больше в Южном Каспии, видимо потому, что вследствие большего развития процессов конвективного перемешивания и вентиляции вод в Среднем Касшии в нем происходит интенсивный обмен кремнием между глубинными и верхними слоями.

Сравнение полученного материала с данными A. С. Пахомовой показывает, что за весь период нсследований среднее содержание кремния в верхнем слое практически не изменилось. В глубинных же слоях Среднего и особенно Южного Каспия произошло увеличение содержання кремния.

Проведенные исследования показали, что в 1965-1970 гг. существенных изменений в гидрохимнческом режиме Каспийского моря не произошло. Распределение основных гидрохнмических характеристик и их величины находились в соответствии с данными А. С. Пахомовой, полученными за 1958-1963 гг.

В настоящее время Каспий переживает время относительной стабилизации гидрохимических условий, объясняемое тем, что влияние изменений гидрохимического режима моря, вызванных зарегулированием стока Волги в 1956-1959 гг., сбалансировалось и не ощущается столь сильно, как это было в первые годы после введения в строй крушных гидроэлектростанций.

Сопоставление современных тидрохимических характеристик Кастия с данными 1958-1963 тг. показывает некоторые их сдвиги. Так, при сравшении распределения солености на стандартных разрезах выявляется, что на разрезе Чечень - Мангышлак она повысилась на $0,2-0,5 \%$. Сравнительно небольшое увеличение произопло также на разрезе Дивичи -
${ }^{1}$ В августе-сентябре 1972 г. в әкспедиции МГУ под руководством С. А. Брусиловского Н. Андреевой были собраны матерналы о содержании биотенных веществ в придонном слое воды Южного Кастня. Пробы были собраны при помощи теологнческой трубкки. Анализ собранного матернала показал, что на западном шельфе содержание кремния колебалось от 150 до 800 мкг/л, увеличиваясь с глубиной. Мористее изобаты 100 м были взяты пробы в местах преднодагаемых выходов грязевых вулканов. Было выяснено, что восточнее устья Куры, в районе банки Калмычкова на глубине 100 - 160 m содержание кремния достнгало $1400 \mathrm{mгг} / \boldsymbol{\pi}$, а к востоку от Куринской косы на глубине 450 м - 1900 мкг/л. Содержание фосфора в пробах до глубины 100 m равнялосs $5-24 \mathrm{mKr} / л$, мористее $-30 \mathrm{mkr} / \mathrm{s}$.

На восточном шельфе, западнее п юго-западнее о-ва Огурчинского, содержание кремння изменялось от 30 (о-в Огурчинский) до 800 мкг/л на глубине 100 m . Концентрация фосфора в прндонных водах этого района изменялась от 0 до 13 мкт $/$ л.

Кендерли, а на разрезе Куринский Камень - Огурчинский в верхнем слое отмечено даже некоторое уменьшение солености, а в глубинных слоях она осталась практически неизменной.

Распределение кислорода в основном также осталось примерно таким же, как в 1958-1962 гт.

Величины рН, так же как и содержание кислорода, сохранили основные закономерности своего распределения, однако в верхнем слое они стали более высокими, чем раньше.

Судя по распределению бногенных веществ, в настоящее время баланс их в море, нарушенный в 50-х тодах в связи с зарегулированием стока Волги, установился и уменьшения количества биогенных веществ не щроисходит. Содержание фосфатов в общем незначштельно отличается от данных А. С. Пахомовой за 1958-1963 гг. В глубннных слоях Среднего и особенно Южного Касния отмечается увеличение содержания кремния.

[^0]: ${ }^{1}$ В удобрении вод Каспия бногенными әлементами ваянное значение в прошлом имел смыв органогенных веществ с полей и лугов. Так, К. М. Бар (1860, стр. 30) пишет: «Волга с притоками своими ежегодно наводнлет обширные пространства п уносит орғаннческие остатки прошедшего года ншже по теченио своему. К этому присоединяется еще то, что она протекает больщей частью по странам, в которых навоя считается излишним бременем и где не знают для него лучшего ушотребления, как заваливать им оврагн, столь часто образующиеся в тамошней рыхлой почве, дабы предотвратить продвитание их вперед. Каждый дождь принимает в себя что-нибудь нз этого навоза и уносит в Волгу".

[^1]: ${ }^{1}$ Более подробно некоторые особенности этого процесса будут рассмотрены ниже.

