БИОЛОГИЧЕСКАЯ ПРОДУКТИВНОСТЬ ВОДОХРАНИЛИЩ ВОЛЖСКО-КАМСКОГО КАСКАДА

Строительство каскада водохранилищ на Волге и Каме было предпринято с целью получения дешевой электроэнергии, создания нормальных условий для судоходства, накопления водных ресурсов для водоснабжения,

сельского и рыбного хозяйств.

После регулирования стока Волги произошли серьезные изменения ее гидрологического и гидрохимического режимов: уменьшение движения скорости вод, осветление их, повышение биогенных элементов и органических веществ. Создались благоприятные условия повышения биологической продуктивности.

При проектировании водохранилищ Волжско-Камского каскада предусматривался большой комплекс рыбоводно-мелиоративных мероприятий с целью компенсации потерь рыбного хозяйства на Каспийском море.

В первые годы существования водохранилищ, а также в годы с благоприятным уровенным режимом, в них наблюдалось эффективное воспроизводство рыб: леща, щуки, судака, плотвы, синца, чехони и др.

Вылов рыбы в водохранилищах по сравнению с уловом их в водоемах, вошедших в зону затопления, увеличился в 2—3 раза; в 1971 г. в Горьковском водохранилище с 2,1 до 5,1 тыс. ц, в Куйбышевском —

с 19,7 до 40 тыс. ц, в Волгоградском — с 19,7 до 25,9 тыс. ц.

Уловы рыбы в Волге до зарегулирования стока. Общий вылов в Волге до ее зарегулирования (Берг, 1934) достигал в 1930 г. примерно 203,7 тыс. ц, из них по Нижневолжскому, Средневолжскому районам, Татарской республике показатели были следующими: осетровых — 6,5, белорыбицы — 0,2, сельдей — 13,5, воблы — 4,3, миноги — 6,4, крупного частика — 74,5, мелкого частика — 65,0. Остальной улов — 33,3 тыс. ц — приходился на Верхневолжский район с озерами. Вылов проходных рыб составлял около 30 тыс. ц. Годовой улов в р. Оке исчислялся в 6,7 тыс. ц.

Физико-географическая характеристика. Водохранилища Волжско-Камского каскада расположены в разных географических зонах. Так, Иваньковское, Угличское, Рыбинское, Горьковское и Куйбышевское находятся в зоне смешанных лесов (южная часть последнего — в зоне лесостепи), Саратовское — в степной зоне и Волгоградское — в зоне степей и полупустынь. Очень сильно меняется и лесистость в районе расположения водохранилищ. Так, в районе Камского водохранилища леса составляют 40—80% площади, Куйбышевского — 20—30, а Волгоградского — 1,5%. Разнообразие растительности климатических зон оказывает существенное влияние на размыв берегов и на весь процесс заиления водоемов.

Водохранилища, простираясь с севера на юг, располагаются и в различных почвенных зонах. Рыбинское, Иваньковское и Угличское находятся в зоне подзолистых почв; Горьковское — зоне дерново-подзолистых; Куйбышевское — в зоне серых оподзоленных почв, переходящих в чернозем степной полосы. Южнее Куйбышевского и в районе Волгоградского водохранилища залегают южные черноземы, переходящие в каштановые почвы сухих степей.

В Куйбышевское водохранилище через основные речные магистрали (Волга, Кама и др.) ежегодно поступает примерно 21 млн. м³ наносов,

которые до строительства гидроузлов на Волге достигали ее дельты и

wasia

оседали в поймах, обогащая почву пойменных лугов минеральными и органическими веществами. В настоящее время большая их часть оседает в водохранилищах (Расторгуев, 1972).

По сообщению С. Л. Вендрова (1970), вследствие наносов и разрушения берегов объем Куйбышевского водохранилища за 14 лет его сущест-

вования значительно уменьшился.

На Рыбинском водохранилище при усилении волновой активности наблюдаются разрушение берегов и всилывших торфяников, а также размыв ложа мелководий. Продукты размыва выносятся на глубокие места и способствуют нивелировке дна. В связи с этим резко увеличивается площадь, занятая песками. По мнению В. П. Курдина и Н. А. Зиминовой (1968), в ближайшие годы 75% всей площади Рыбинского водохранилища будут составлять пески. Изменяется и конфигурация береговой линии. Некоторые небольшие заливы в маловодные годы теряют связь с основными водоемами (Гордеев, 1971).

Общая сводная характеристика основных водохранилищ Волжско-

Камского каскада приведена в табл. 26.

Биогенные элементы. После зарегулирования стока Волги в водохранилищах наблюдается повышенное по сравнению с рекой количество биотенных элементов. В приплотинном плесе Куйбышевского водохранилища (Гусева, 1968) увеличилось содержание в мг/л отдельных форм азота и фосфора, в том числе аммонийного азота с 0,012 в реке до 0,153 в водохранилище, нитратов — с 0,211 до 0,298 и фосфатов — с 0,019 до 0,049.

В. И. Сиденко (1968) приводит данные о содержании биогенных элементов в Волгоградском водохранилище. Величина минерального азота колебалась от 0,03 до 1,80 мг/л, что несколько выше величин (0,02—1,02 мг/л), наблюдавшихся в реке до зарегулирования. Содержание минерального фосфора колебалось от 0,004 до 0,170 мг/л, что вдвое превы-

шает величины (0,001-0,078 мг/л), наблюдавшиеся в реке.

На концентрацию биогенных элементов влияет сброс в водохранилище бытовых и промышленных сточных вод. Так, С. М. Драчев, А. А. Былинкина, Л. А. Калинина (1971) отмечают, что в Иваньковское водохранилище наибольшее количество биогенных элементов поступает со сточными водами из Калинина, в Рыбинское — из Череповца. По указанию этих авторов, в калининских сточных водах содержится азота аммонийного от 30 до 90 мг/л, азота нитратного — до 0,2 мг/л, фосфора общего — от 1 до 2 с лишним мг/л, а в череповецких — азота аммонийного от 25 до 50 мг/л, азота нитратного 0,25—5,77 мг/л, фосфора общего 0,89—3,59 мг/л. Бытовые и промышленные стоки являются существенным фактором эвтрофизации водоемов.

Бактерии. Существенное значение в круговороте веществ имеет деятельность микроорганизмов. По данным В. И. Романенко (1971), в водоемах Волги наблюдается два максимума численности бактерий — весной и осенью, а два минимума — летом и зимой. Увеличение количества бактерий весной и осенью объясняется смывом их с водосборной илощади во время половодья, более частым ветровым перемешиванием воды и взмучиванием донных отложений. Например, в Рыбинском водохранилище летом количество бактерий в среднем за 15 лет составляло 1,3—1,5 млн.

в 1 мл воды, а весной и осенью — 1,6—1,8 млн.

Численность бактерий за навигационный период (с мая по ноябрь) в Рыбинском водохранилище, по данным за 15 лет, составляла в среднем $1,42\pm0.18$ млн. в 1 мл воды, в Горьковском водохранилище — 1-2 млн., в Куйбышевском 1-3 млн. Биомасса бактерий в сыром весе чаще всего была равна 0,5-2 мг/л, а продукция в течение навигационного периода колебалась от 30 до 100 мг/л. Р/В коэффициент изменялся в пределах 50-100.

Макрофиты. Неустойчивый уровенный режим водохранилищ, а также переработка береговой линии во время волнобоя оказывает отрицательное

ТАБЛИЦА 26 Характеристика водохранилиц Волжеко-Камекого каскада*

		Пло-	Offer and	Средний многолет- ний водо-	Наи-	Макси-		Глубина, м	Соотн в вод % от	догношенин глубия в водохранилидах, % от их площади	Соотношения глубин в водохранилищах, % от их площади	Осущаеман площадь во- дохраналищ при макси- мальной сра- ботке уровня	еман 15 во- 13 пп 1 ксв- й сра-	Зал вход ложа	Залитые угодья, входящие в состав ложа водохранилищ, %	ья. лищ,
Водохранилище	Год заполне- ния	mante, mpn HIIV, TMC. FA	HUV,	осмен то	боль- шан шмри- на, км		макси- маль- ная	сред-	0 N 2	2—10 M	10—20 M	макси- маль- ная сработ- Ка уров- ия, м	% от площа- пл при НПУ	паш- ни, се- ноко- сы, вы- гоны, усадь- бы	лес, кустар- пик, прочие неу- добные земли	водная пло-
Иваньковское	1937	32,7	1,1	8,6	12,0	113,0	0,61	3,4	78,3		Ţ	4,5	74,5	1,09	29,3	10,6
Угличское	1940	22,1	1,3	8,9	5,0	151	23,0	5,4	4	I	1	1	1	1,44	0,11	6,14
Рыбинское	1941-1947	455,0	25,4	1,2	1	372	33,0	5,6	48,3	38,0	13,7	4,0	9,64	39,9	55,9	4,2
Горьковское	1955—1957	157,0	8,7	6,0	14,0	440	0,71	5,5	45,4	32,3	22,3	2,0	24,9	47,1	28,5	24,4
Куйбышевское	1955—1957	644,8	58,0	4,4	33,0	510	41,0	0,6	36,0	30,0	34,0	5,0	42,3	48,0	36,0	16,0
Саратовское	1967—1968	183,1	12,9	17,9	20,0	357	30,0	6,9	9,94	25,3	28,1	0,1	6,9	40,3	36,1	23,7
Волгоградское	1958-1960	311,7	31,4	7,3	17,0	540	41,0	10,1	37,0	21,0	42,0	3,0	24,1	37,5	36,8	25,7
Камское	1954—1956	191,5	11,4	4,6	20,0	300	21,0	6,0	50,0	32,0	18,0	7,5	34,0	38,5	47,0	14,5
Воткинское	1961	110,0	7,6	6,0	1	350	19,0	0,6	1	1	ì	4,0	28,5	23,2	54,1	17,7

*Изв. ГосНИОРХ, т. 50, 1961.

воздействие на формирование прибрежной водной растительности. Как отмечают В. А. Экзерцев, А. П. Велавская, Т. Н. Кутова (1971), значение высшей водной растительности в круговороте органического вещества в таких водохранилищах, как Рыбинское, Горьковское, Куйбышевское и Волгоградское, крайне незначительно, тогда как на Иваньковском и Угличском водохранилищах первичная продукция макрофитов определяет их биологическую продуктивность.

Площадь водной растительности в Иваньковском водохранилище составляет 16,7% зеркала водоема. На единицу площади водохранилища приходится 75,8 г/м² и на единицу объема 22,2 мг/л органического вещества. В Угличском водохранилище площадь зарослей составляет 5.3% общей его площади и за период вегетации здесь образуется 15,4 г/м² и 3,1 мг/л органического вещества, т. е. в 6-7 раз меньше,

чем в Иваньковском.

Фитопланктон определяет уровень первичной продукции водоемов. После зарегулирования Волги изменился как качественный, так и количественный его составы. Так, летом стали преобладать синезеленые водоросли, тогда как до зарегулирования стока доминировали диатомовые и зеленые. «Цветение» воды, вызванное массовым развитием синезеленых, наблюдается летом и ранней осенью в приплотинных участках и заливах, где течение весьма слабое. Синезеленые водоросли исчезают из планктона при скоростях течения, превышающих 0,1 м/сек (Гусева, Приймаченко, 1971).

Интенсивное развитие синезеленых водорослей («цветение») наблюдается в Куйбышевском, Волгоградском, Иваньковском и в отдельные годы в Рыбинском водохранилищах. Изменение биомассы фитопланктона (в г/м³) в волжских водохранилищах в 2-метровом слое по сезонам года

показано ниже.

	Весна	JIero	Осень	Автор
Иваньковское * (1954—1956 гг.)	0,01-1,9	1,4-44,9	0,5-22,2	Буторина, 1961
Угличское (1954—1956 гг.)	0,05-10,4	3,8-15,2	1,7-34,1	Бугорина, 1966
Волгоградское ** (1963—1967 гг.)	1,2	0,8-6,7	1,9-0,7	Далечина, 1971

^{*} Иваньковский плёс.

Интенсивность «цветения» воды зависит от метеорологических условий года, водности, режима работы гидростанций и поступления синезеленых водорослей из лежащего выше водохранилища.

По определению И. Л. Пыриной (1968), в среднем за вегетационный период в Иваньковском, Рыбинском, Горьковском, Куйбышевском водохранилищах первичная продукция соответствует 1—3 г О2/м2 в сутки. Такие же средние величины (1-4 г O₂/м²) получены и для деструкции.

Из указанных водохранилищ наибольшей продукцией характеризуется Иваньковское и наименьшей — Рыбинское. По деструкции первенство принадлежит сравнительно прогреваемому и глубоководному Куйбышевскому водохранилищу. Мелководное и более холодное Рыбинское водохранилище в этом отношении уступает остальным. В связи с этим в Рыбинском водохранилище оба процесса более или менее сбалансированы.

Зоопланктон. Биомасса зоопланктона в водохранилищах после заре-

гулирования стока увеличилась в несколько раз (табл. 27).

На увеличение биомассы зоопланктона в водохранилищах, как указывает П. Л. Пирожников (1972), оказал влияние биопродукционный эффект подпора, который выразился в снижении скорости течения и увеличения содержания органического вещества и биогенных элементов.

^{*} Иваньковский плёс. ** Поверхностный слой (0—1 м).

Плотность населения и биомасса летнего зоопланктона в некоторых волжских водохранилищах (по П. Л. Пирожникову, 1972)

	Плотность	тыс. экз/м ³	Биом	acca, r/m³
Водохранилище	исходная	современная	исходная	современная
Иваньковское	17,6	373	0,23	1,7
Горьковское *	47	118	1,2	2,5
Куйбышевское **	24	120	1,8	до 9,3
Волгоградское	26,6	160	0,9	2,5

^{*} Озеровилная приплотинная часть.

Биомасса зоопланктона в водохранилищах претерпевает значительные колебания и в отдельные годы бывает ниже наблюдавшейся до зарегулирования стока Волги. Так, например, в 1965 г. в Волгоградском водохранилище при низком паводке и недостаточном прогреве воды биомасса составляла всего 0,625 г/м³ (Вьюшкова, Лахнова, 1971). Однако наблюдения показывают, что, несмотря на отмеченные колебания, биомасса зоопланктона в водохранилищах не становится беднее.

Некоторые авторы (Пирожников, 1972; Кожевников, 1972; Кудерский, 1971; Вьюшкова, Лахнова, 1971) указывают, что в волжских водохранилищах зоопланктон недоиспользуется рыбами, в связи с чем для увеличения рыбопродуктивности они предлагают вселить и выращивать в Куйбышевском и Волгоградском водохранилищах пестрого толстолобика и пругих планктофагов. В Рыбинское и Горьковское водохранилища рекомендуется вселять ряпушку и пелядь. За счет выращивания пестрого толстолобика предполагается получить дополнительно 6-7 тыс. $\mathfrak q$ рыбы (Пирожников, 1972). Однако И. В. Егерева (1968) указывает, что к вселению в водохранилища рыб, питающихся зоопланктоном, следует подходить с большой осторожностью, поскольку в годы с низкой температурой воды летом в Куйбышевском водохранилище, например, заметно снижается биомасса зоопланктона, что ухудшает условия откорма рыб. Зоопланктон в питании рыб всех размеров играет большую роль, им также питается проникшая в водохранилища тюлька. В связи с этим в отдельные годы при неблагоприятных условиях рыбы в водохранилищах могут испытывать недостаток в пище.

Бентос. На формирование бентоса в водохранилищах, средняя глубина которых превышает 6 м, оказало влияние замедление придонного течения (по сравнению с его скоростью в реке), обильное детритообразование, повышенная степень заиления, что способствовало возникновению здесь пелореофильного биоценоза, состоящего из олигохет, личинок хирономид, двухстворчатых моллюсков (табл. 28).

Наиболее массовой формой стала дрейссена. Так, в Куйбышевском водохранилище биомасса ее достигла 223 тыс. т (Аристовская, 1964), или 345 кг/га, в Волгоградском—123 тыс. т (Белявская, 1965), или 371 кг/га. В волжских водохранилищах дрейссену потребляют плотва, густера и лещь, в среднем она составляет 69—80% их пищевого комка.

Биомасса бентоса находится в тесной зависимости от численности бентосоядных рыб, так как воспроизводство донных организмов в водохранилищах не восполняет их убыли в результате выедания. Остаточная биомасса даже в высокопродуктивных водоемах составляет 2—5 г/м². Кроме того, летом биомасса бентоса резко снижается вследствие массового

^{**} Средняя зона.

Средняя биомасса бентоса в некоторых волжских водохранилищах (в г/м²) (по Пирожникову, 1972)

			Основные	группы орг	анизмов	
Водохранилище	Общая биомасса	олиго- хеты	высшие рако- образные и другие ком- поненты	жироно- миды	модлюски	прочие
Рыбинское	5,6—12,9	1,2—1,4	+ +	3,7—8,0	0,2-0,4	0,5—3,2
Горьковское *	24,6	12,3		4,9	3,9	3,5
Куйбышевское **	24,8	1,7	0,06	1,3	21,7	0,04
Волгоградское ***	30,6	1,3	0,04	0,3	28,9	+

^{*} На илистом дне, на других биотопах биомасса ниже.

окукливания и вылета хирономид. Большое значение для пополнения кормового бентоса имела акклиматизация мизид в Куйбышевском и Волгоградском водохранилищах.

С 1957 по 1967 г. в Куйбышевском водохранилище акклиматизировано 33,6 тыс. шт. мизид, в Волгоградском в 1960—1967 гг.— 41,9 тыс. шт. Однако на мелководных участках водохранилищ биомасса бентоса ежегодно значительно снижается вследствие придавливания льдом и перепахивания дна при его весенних подвижках.

Состояние рыбных запасов. В проектах по рыбохозяйственному освоению водохранилищ Волжско-Камского каскада предусматривался годовой улов рыбы 600—650 тыс. ц. Однако до настоящего времени уловы не достигли указанных величин и в 1961—1970 гг. составили соответственно всего 145 и 123 тыс. ц. Промысловая рыбопродуктивность составляла всего 7—8 кг/га вместо намеченной 30—45 кг/га *. Общие уловы рыбы в водохранилищах с 1953 по 1971 г. показаны на рис. 59.

Промысловые уловы леща, судака, щуки приведены на рис. 60.

Основные ценные промысловые рыбы — лещ, судак, щука — составляют в уловах от 62 до 82%. Однако эти цифры свидетельствуют не о большом их запасе, а указывают на предпочтительность вылова. В последние годы значительно снизились запасы щуки и судака. Основной причиной уменьшения их численности является нерациональный промысел в первые годы существования водохранилищ и отрицательное влияние колебания уровня на естественное воспроизводство рыб. Так, если в 1955—1956 гг. в Иваньковском и Угличском водохранилищах вылавливалось 800—1000 ц щуки (15% от общего улова), то в 1970 г.— только 16 ц (0,4%). Уменьшение запаса щуки произошло и во всех других волжских водохранилищах.

В Иваньковском и Угличском водохранилищах временами наблюдается гибель судака вследствие ухудшения гидрохимического режима зимой при сработке уровня воды на 4,5—7 м.

В Рыбинском водохранилище из-за недостатка кормовых организмов в период перехода на хищное питание гибнет много молоди судака. Уловы судака в 1970 г. по сравнению с 1965 г. уменьшились в три раза.

^{••} Приведены данные за июль (1962 г.), в мае и сентябре общая биомасса составляла соответственно 49,8 и 34,5 г/м².

^{•**} Приведены данные по средней зоне — в верхней зоне общая биомасса составляла 82.5 г/м², в нижней — 26,8 г/м².

Примечание, Знак «+» означает, что высшие ракообразные и некоторые другие кормовые организмы обитают в водохранилище, но биомасса их не определена.

^{*} Данные промысловой статистики недостаточно точно характеризуют уловы: не учитывается любительский лов рыбы.

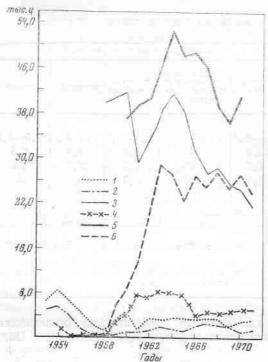
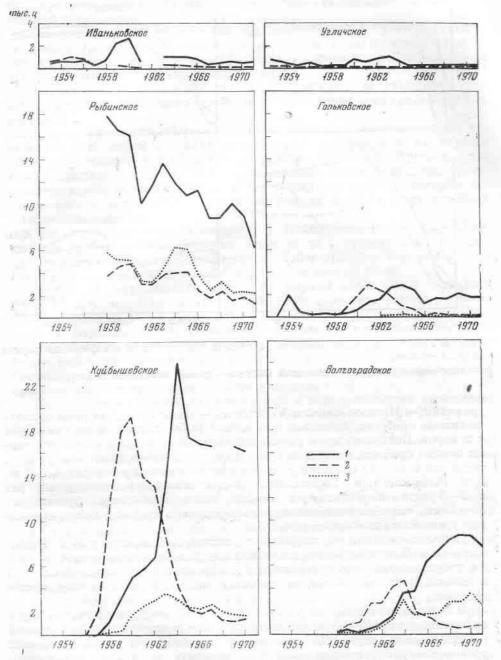


Рис. 59. Уловы рыбы в волжских водохранилищах

- Иваньковское;
- Угличское;
- Рыбинское;
- Горьковское;
- Куйбышевское; - Волгоградское

Другой причиной уменьшения численности судака в Рыбинском водохранилище явился перациональный промысел.


Почти во всех водохранилащах запасы леща находятся в благоприятном состоянии. Некоторые авторы (Цыплаков, 1970; Небольсина у др., 1971) указывают, что после зарегулирования стока Волги основная масса

леща стала откладывать икру в некотором отдалении от берега.

Для волжских водохранилищ различают три основные фазы изменения рыбопродуктивности: а) роста, б) максимума и в) стабилизации или снижения. Смена фаз зависит от условий воспроизводства и наличия кормовой базы. Как отмечает Л. А. Кудерский (1971), в последние годы увеличились запасы кормового зоопланктона и мелкой рыбы. В связи с этим в водохранилищах создались благоприятные условия для роста численности рыб — планктофагов и хищников. Однако эти возможности полностью не используются. Планктофаги весьма малочисленны, не происходит значительного накопления запасов синца, тюльки, уклеи, снетка. Численность ценных хищных рыб также остается ограниченной. В связи с этим наблюдается несоответствие между наличием кормовых ресурсов и потребляющими их рыбами.

Одной из главных причин низкой рыбопродуктивности волжских водохранилищ является неблагоприятный уровенный режим, отрицательно сказывающийся на естественном воспроизводстве рыб. На рис. 61 показан уровенный режим водохранилищ, наблюдавшийся в 1966—1968 гг. в период нереста рыб - с апреля по июнь. Из рисунка видно, что наибольшая сработка уровня происходит в Куйбышевском и Волгоградском водохранилищах. Ежегодно в конце апреля—начале мая уровень повышается. В середине мая осуществляется резкий сброс воды для обводнения дельты Волги. Это приводит к осущению больших площадей мелководий и гибели отложенной здесь икры. Перед половодьем уровень воды в водохранилищах сильно снижается. Так, в 1966—1968 гг. в Иваньковском водохранилище в конце марта — начале апреля уровень воды был на 4,3-4,5 м ниже НПГ — 124 м. В предшествующие годы уровень воды в Иваньков-

ском водохранилище срабатывался до 7 м.

Рис. 60. Динамика уловов леща, судака, щуки в водохранилищах Волжского каскада по годам

1 — лещ; 2 — щука; 3 — судак

Суточные и недельные колебания уровня в нижних бьефах водохранилищ приводят к нарушению условий зимовки и нереста проходных и полупроходных рыб.

Для обеспечения нормальных условий воспроизводства, нагула и зимовки леща, судака, синца, щуки, линя и других ценных промысловых рыб рыбохозяйственные организации на основе многолетних наблюдений разработали основные требования к уровенному режиму каждого водохранилища Волжско-Камского каскада по сезонам года. Для северных водо-

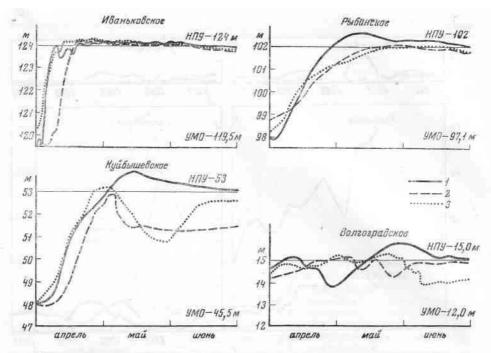


Рис. 61. Уровенный режим некоторых волжских водохранилищ в нерестовый период (апрель — июнь)

I — многоводный 1966 г.; 2 — маловодный 1967 г.; 3 — средний по водности 1968 г.

хранилищ — Иваньковского и Угличского — решающим фактором является зимняя сработка, приводящая к гибели рыбы от придавливания льдом и заморов. Исходя из этого рыбохозяйственные организации требуют, чтобы зимняя сработка не превышала 4 м от нормального проектного уровня, тогда как величина сработки уровня в отдельные годы достигала 4,5—7 м. Для Рыбинского и Горьковского водохранилищ рекомендуется раз в 2—3 года наполнять их весной выше проектного уровня на 30—40 см, что обеспечит расширение нерестового ареала и получение высокоурожайного поколения рыб.

В целях создания благоприятных условий для нереста рыб в Куйбышевском и Волгоградском водохранилищах рекомендуется весной во время попусков сохранять постоянный уровень воды и проводить сброс воды в низовые Волги транзитом, не наполняя водохранилища, за счет прито-

ка рек.

В летне-осенний период рекомендуется снижать уровень воды в водохранилищах на 1,0—1,5 м для произрастания в осущенной зоне луговой растительности, служащей субстратом для откладки икры. Снижение уровня стимулирует отход рыбы из мелководий на глубины перед ледоставом, так как образующийся в зимний период ледяной покров может уничтожить растительность на нерестилищах и, что самое главное, оставшаяся в мелководной зоне рыба может погибнуть от придавливания оседающим льдом и замора.

Другой причиной, влияющей на рыбопродуктивность водохранилищ, является недостаточное проведение комплекса рыбоводно-мелиоративных

мероприятий.

В настоящее время рекомендуется проведение рыбоводно-мелиоративных мероприятий для увеличения рыбопродуктивности водохранилищ. По предложению Г. П. Кожевникова (1972), необходимо продолжение вселения и выращивания пеляди и ряпушки в Рыбинском и Горьковском водохранилищах, а пестрого и белого толстолобиков в Куйбышевском и

Волгоградском. В Горьковском водохранилище намечено отчленение зали-

вов для выращивания щуки.

Для улучшения кормового бентоса Ц. И. Иоффе (1971) предлагает акклиматизировать в Рыбинском и Горьковском водохранилищах гаммарид, в водохранилищах Волжского каскада — монодакну, в Куйбышевском п Волгоградском — полихет — амфаретид.

Для решения вопроса о вселении черного амура — моллюскоеда в южных водохранилищах Волги необходимо проведение экспериментальных

работ.

В целях улучшения эффективности естественного воспроизводства частиковых рыб путем создания оптимальных условий для их нереста Н. К. Небольсина и др. (1971) предлагают отчленить Красноярскую пойму площадью около 17 тыс. га, что можно осуществить при строительстве дамбы протяженностью 45 км и создании шлюзов, которые позволят регулировать пропуск производителей на нерест и выпуск молоди в водохранилище.

Для сохранения запасов стерляди в Куйбышевском водохранилище необходимо построить рыбоводный завод по ее искусственному разведению, так как в результате строительства Чебоксарской и Нижне-Камской

ГЭС будет нарушен естественный нерест этой ценной рыбы.

Необходимо организовать работу по выращиванию рыбы в садках (Михеев, Мейснер, Михеев, 1970). В качестве корма эти авторы рекомендуют использовать непромысловую, малоценную рыбу водохранилищ.

Э. А. Бервальд (1964) рекомендует создать на отдельных небольших заливах водохранилищ комплексные хозяйства по совместному выращиванию рыб и уток, а также выставлять перед гидросооружениями садкибиофильтры, в которых рыбы, моллюски и хирономиды улавливали бы

органическое вещество, сбрасываемое в нижний бьеф.

Для освоения имеющихся запасов рыб в водохранилищах необходимо улучшить организацию их промысла (Небольсина и др., 1971). При осуществлении мероприятий по увеличению рыбопродуктивности водохранилищ Волжско-Камского каскада, намеченных рыбохозяйственными организациями, необходимо в первую очередь провести работы, связанные с улучшением естественного воспроизводства рыб.

В условиях существенного уровенного режима водохранилищ для решения основной проблемы их эффективного использования для рыбного хозяйства необходимо предусмотреть дальнейшее освоение мелководий для строительства нерестовых и товарных хозяйств. Мелководья можно использовать для интенсивного выращивания рыб и получения большой фитомассы ценных кормовых растений, например, дальневосточного риса.

Заслуживают внимания предложение о вселении и выращивании в водохранилищах рыб-планктофагов — белого и пестрого толстолобиков, а также увеличения численности хищников — щуки и судака, являющихся ценными промысловыми рыбами, запасы которых в настоящее время резко снизились. Дальнейшее проведение работ по акклиматизации кормовых организмов позволит увеличить и запасы бентосоядных рыб.

Можно считать, что при планомерном проведении намеченных мероприятий перед рыбным хозяйством в водохранилищах открываются боль-

шие возможности.