ФТАЛАТЫ В ДОННЫХ ОТЛОЖЕНИЯХ КАСПИЙСКОГО МОРЯ

Татарников В.О.¹, Коршенко А.Н.², Кочетков А.И.³

¹ФГБУ «Каспийский морской научно-исследовательский центр»,
Россия, Астрахань, Ширяева, 14

kaspmniz@mail.ru

 2 ФГБУ «Государственный океанографический институт им. Н.Н. Зубова», Россия,

Москва, Кропоткинский пер., 6

korshenko@mail.ru

³НПО «Тайфун», Россия, Обнинск, Победы, 4

akochet@mail.ru

Фталатами называются эфиры фталевой кислоты, широко используемые в промышленности, главным образом в качестве пластификаторов различных полимеров (поливинилхлорида, полистирола и т.д.).

Среди фталатов есть весьма токсичные соединения, относящиеся к 1-му классу опасности, например, бис(2-этилгексил)фталат. Для некоторых фталатов установлены ПДК в водоемах хозяйственно-питьевого (ПДК_{сан}) и рыбохозяйственного назначения (ПДК_{рх}). Например, для дибутилфталата ПДК_{сан} = 0,2 мг/л, а ПДК_{рх} = 0,001 мг/л. Следует отметить, что упомянутые фталаты — бис(2-этилгексил)фталат и дибутилфталат — относятся к наиболее опасным производным фталевой кислоты, их производство и использование запрещено с 2002 года (Майстренко, Клюев, 2002).

Несмотря на то, что фталаты включены в список приоритетных органических загрязняющих веществ, сведения об их содержании и распределении в объектах и компонентах окружающей среды пока немногочисленны. Как следует из данных, приведенных в табл. 1 содержание фталатов в донных отложениях рек, озер и морей широко варьирует.

Таблица 1 - Содержание бис(2-этилгексил)фталата (мкг/кг) в донных отложениях

Водный объект	Концентрация, мкг/кг	Источник информации		
оз. Байкал*	30-40	Азарова, 2003		
р. Объ, верховье**	7-26	Усков, 2010		
бассейн р.Обь***	3700	Кадычагов и др., 2010		
дельта Миссисипи****	69			
Мексиканский залив****	0,1-248	F : (11 14 1002		
р. Рейн (Нидерланды)****	6500-36000	Environmental health, 1992		
реки Японии****	9-35000			
р. Крауч, Англия****	11,6-26,2			

Мы не нашли в литературе сведений о содержании фталатов в воде и донных отложениях Каспийского моря. В связи с этим в рамках «Программы мониторинга трансграничных водных объектов Каспийского моря на 2012-2014 гг.», разработанной и реализуемой Росгидрометом в рамках ФЦП «Развитие водохозяйственного комплекса Российской Федерации в 2012-2020 гг.» в части проб донных отложений, отобранных осенью 2012 года в пределах российского сектора недропользования Каспийского моря. В это время года экспедиционные работы выполнялись в 10 районах (в т.ч. на взморье рр. Волга, Терек, Сулак и Самур) и на 7 разрезах (в т.ч. 2 «вековых»), схема станций приведена на рис. 1.

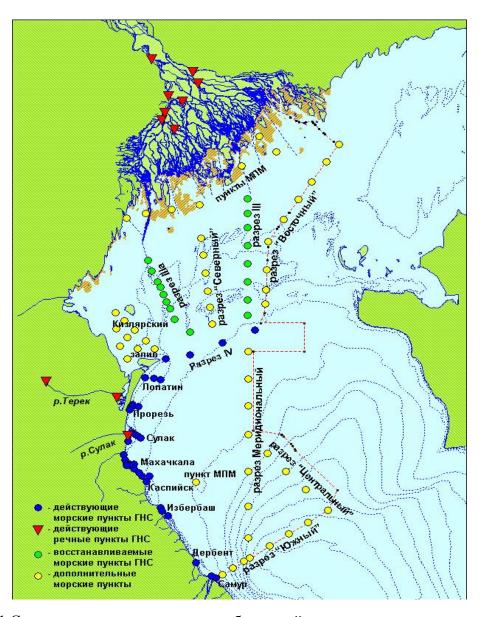


Рис. 1 Схема расположения пунктов наблюдений за состоянием и загрязнением трансграничных водных объектов Каспийского моря в 2012 г.

Анализ донных отложений на содержание фталатов проводился в лаборатории НПО «Тайфун». Список определяемых производных фталевой кислоты включал следующие вещества: диметилфталат (ДМФ), диэтилфталат (ДЭФ), ди-п-бутилфталат (ДБФ), ди-п-октилфталат (ДОФ), бис(2-этилгексил)фталат (БЭГФ), бутилбензилфталат (ББФ). Результаты статистического анализа содержания фталатов (мкг/кг) в донных отложениях российского сектора недропользования Каспийского моря приведены в табл.2

В соответствии с полученными результатами:

- концентрация ДЭФ в донных отложениях изменялась в пределах от 0 до 119
 мкг/кг; средняя концентрация составила 26 мкг/кг, фоновая¹ 12,8 мкг/кг;
- концентрация ДБФ в донных отложениях изменялась в пределах от 0 до 3167
 мкг/кг; средняя концентрация составила 823 мкг/кг, фоновая 486 мкг/кг;
- концентрация ДОФ в донных отложениях изменялась в пределах от 0 до 85
 мкг/кг; средняя концентрация составила 12,1 мкг/кг, фоновая 6,0 мкг/кг;
- концентрация БЭГФ в донных отложениях изменялась в пределах от 0 до 1450
 мкг/кг; средняя концентрация составила 441 мкг/кг; фоновая 190 мкг/кг.

Присутствие ДМФ и ББФ в донных отложениях российского сектора недропользования Каспийского моря осенью 2012 года не обнаружено. Судя по концентрации БЭГФ, уровень загрязнения фталатами донных отложений Каспийского моря можно охарактеризовать как средний, он ниже, чем в Рейне и реках Японии, но выше, чем дельте Миссисипи и Мексиканском заливе (табл. 1).

Таблица 2 - Результаты статистического анализа содержания фталатов (мкг/кг) в донных отложениях российского сектора недропользования Каспийского моря

Статистические параметры	ДМФ	ДЭФ	ДБФ	ДОФ	ФЛЄЗ	ББФ	сумма фталатов
Средняя концентрация	0	26,1	823	12,1	441	0	1302
Фоновая концентрация	0	12,8	486	6,02	190	0	1156
Максимум	0	119	3167	84,7	1450	0	3917
Минимум	0	0	0	0	0	0	0,00
Стандартное отклонение	0	33,2	885	21,7	475	0	857

¹ За фоновую концентрацию (геохимический фон) принимали медиану - центральное значение ряда, характеризуемое наибольшей *робастностью* – устойчивостью к влиянию «выбросов» на его краях.

Анализ пространственного распределения показал, что наиболее высокая концентрация фталатов была характерна для прибрежных районов, в т.ч. подверженных влиянию речного стока. Так, наибольшим содержанием ДЭФ отличались донные отложения Кизлярского залива, наибольшее содержание ДБФ и ДОФ обнаружено в пробах донных отложений, отобранных на разрезе «Северный». Наибольшая концентрация самого БЭГФ – самого токсичного из определяемых фталатов – была зарегистрирована в пробах, отобранных в мелководной зоне устьевого взморья Волги. Повидимому, фталаты в Каспийское море поступают из наземных источников и, в основном, с речным стоком.

Таблица 3 - Пространственное распределение фталатов в донных отложениях российского сектора Каспийского моря

Район	ДЭФ	ДБФ	ДОФ	БЭГФ	Сумма фталатов
Взморье Волги*	7	117	6,2	942	1072
Кизлярский залив	71	1540	7,5	145	1763
Северный	0	3167	71,3	679	3917
Восточный	12	633	45,4	228	919
Махачкала	10	1205	7,7	134	1356
Разрез III ГСН	52	1290	3,4	68	1415
Центральный	0	99	0	533	632
Южный	19	161	3,2	199	381

Примечание: на взморье Волги пробы отбирались на станциях международной программы мониторинга Каспийского моря, одобренной на 4-й конференции сторон Тегеранской конвенции, на рис. 1 эти станции обозначены как МПМ.

Для выяснения особенностей переноса и накопления фталатов в Каспийском море были проведен сравнительный анализ их концентрации в донных отложениях отдельных районов (табл. 4), где параллельно выполнялось определение гранулометрического состава и содержания органического вещества в донных отложениях (табл. 5).

Таблица 4 - Пространственное распределение фталатов в донных отложениях отдельных районов российского сектора недропользования Каспийского моря

Участок	ДЭФ	ДБФ	ДОФ	БЭГФ	сумма фталатов
Восточная часть взморья Волги	8,2	101	5,4	802	917
Западная часть взморья Волги	6,0	129	6,7	1047	1188
Кизлярский залив	71	1540	7,5	145	1763
Открытая часть Северного Каспия	31	1384	29	223	1667
Дербентская котловина	13	140	2,1	310	465

Таблица 5 - Гранулометрический состав (%) и содержание органического вещества (%) в донных отложениях российского сектора недропользования Каспийского моря

Участок	ракуша	крупный песок	мелкий песок	алеврит	пелит	органическое вещество
Восточная часть взморья Волги	11,7	13,5	63,9	8,3	2,7	0,3
Западная часть взморья Волги	7,0	5,8	72,9	12,8	1,6	0,2
Кизлярский залив	2,3	4,6	28,5	31,0	33,6	1,3
Открытая часть Северного Каспия	19,0	32,0	34,5	8,6	5,9	0,4
Дербентская котловина	0,5	2,5	4,5	3,0	89,5	0,6

Результаты корреляционного анализа указывают, что концентрация ДЭФ и ДБФ находится в положительной связи с концентрацией органического вещества в донных отложениях, а ДОФ и БЭГФ – с концентрацией крупнозернистых фракций (ракуши и песка). По-видимому, пути миграции и накопления в Каспийском море у различных фталатов отличаются друг от друга.

Таблица 6 – Результаты корреляционного анализа определению связи между содержанием фталатов и составом донных отложений (коэффициенты линейной корреляции, n=21, p=0,05)

	ДЭФ	ДБФ	ДОФ	БЭГФ	сумма фталатов
ракуша	-0,02	0,34	0,41	0,04	0,38
крупный песок	-0,03	0,25	0,17	-0,20	0,16
мелкий песок	-0,34	-0,38	-0,02	0,42	-0,17
алеврит	0,22	0,27	-0,08	-0,10	0,23
пелит	0,21	-0,02	-0,14	-0,23	-0,14
органическое вещество	0,65	0,42	-0,08	-0,31	0,29

Впервые выполненные исследования содержания фталатов в Каспийском море привели нас к следующим выводам:

- 1. Уровень содержания фталатов в донных отложениях Каспийского моря выше, чем в водных объектах с низкой антропогенной нагрузкой, но ниже, чем в водных объектах, где она высока (р.Рейн).
- 2. Фталаты поступают в Каспийское море главным образом из наземных источников, основным из которых является речной сток.

3. Пути миграции и накопления в Каспийском море у различных фталатов отличаются друг от друга.

В 2013-2014 гг. в рамках «Программы мониторинга трансграничных водных объектов Каспийского моря на 2012-2014 гг.» планируется продолжить исследования содержания фталатов в донных отложениях Каспийского моря.

Список литературы

- Азарова И. Н. ВЭЖХ метод определения (2-этилгексил)фталата для изучения его поведения в экосистеме озера Байкал: Диссертация на соискание ученой степени кандидата химических наук. Иркутск, 2003.
- Кадычагов П. Б., Русских И. В., Белицкая Е. А., Стрельникова Е. Б., Гулая Е. В. Органические примеси в воде и донных отложениях в верхнем течении р.Обь // Защита окружающей среды в нефтегазовом комплексе. 2010. № 7. С. 9-13.
- Майстренко В. Н., Клюев Н.А. Эколого-аналитический мониторинг органических загрязнителей. М.: БИНОМ. Лаборатория знаний, 2004. 323 с.
- Усков Т. Н. Загрязнение поверхностных вод фталатами на примере верхнего течения р.Обь и Новосибирского водохранилища // Материалы X ежегодной конференции молодых ученых ИВЭП СО РАН. Барнаул, 2010.

Environmental health criteria diethylhexyl phthalate. World Health Orgnization. Geneva, 1992.